Abstract
In this paper, a system of nonlinear ordinary differential equations (NODEs), namely the equation model of the human immunodeficiency virus (HIV) infection of \(CD4^+ T\) cells, is studied. Our approach is implemented by using the Shifted-Lagrangian Jacobi (SLJ) polynomials formed by Shifted-Jacobi-Gauss-Radau (SJ-GR) points. In a new insight, by applying Quasilinearization method (QLM) the system of NODE’s is simplified and changed into a system of Linear ordinary differential equations (LODE’s) and instead of working on a system of NODE’s, all processes and works are done on a system of LODE’s. Therefore, unlike the most of the current studies working on nonlinear algebraic equations, the problem is reduced to a system of linear algebraic equations. Then, to solve the problem and find the unknown approximation coefficients, a system of \(Ax=b\) has been solved. At the end, the accuracy and reliability of this method are shown and comparisons with the other current work’s results are made.
This is a preview of subscription content, access via your institution.


References
Perelson, A.S.: Modeling the interaction of the immune system with HIV, pp. 350–370. Springer, Berlin (1989)
Gandomani, M.R., Kajani, M.T.: Numerical solution of a Fractional order model of HIV infection of \(CD4^+\)T cells using Müntz-Legendre Polynomials. International Journal Bioautomation 20(2) (2016)
Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of \(CD4^+\)T cells. Math. Biosci. 165(1), 27–39 (2000)
Doha, E., Bhrawy, A., Hafez, R., Abdelkawy, M.: A Chebyshev-Gauss-Radau scheme for nonlinear Hyperbolic system of first order. Appl. Math. Inf. Sci. 8(2), 535–544 (2014)
Parand, K., Hosseini, L.: Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using rational Jacobi collocation method. Int. J. Numer. Methods Heat Fluid Flow 23(5), 772–789 (2013)
Parand, K., Rezaei, A.R., Taghavi, A.: Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach. Math. Methods Appl. Sci. 33(17), 2076–2086 (2010)
Parand, K., Taghavi, A.: Rational scaled generalized Laguerre function collocation method for solving the Blasius equation. J. Comput. Appl. Math. 233(4), 980–989 (2009)
Rad, J.A., Kazem, S., Shaban, M., Parand, K., Yildirim, A.: Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials. Math. Methods Appl. Sci. 37(3), 329–342 (2014)
Parand, K., Dehghan, M., Baharifard, F.: Solving a Laminar boundary layer equation with the Rational Gegenbauer functions. Appl. Math. Model. 37(3), 851–863 (2013)
Rezaei, A.R., Shaban, M., Parand, K.: Numerical investigation on nano boundary layer equation with Navier boundary condition. Methods Appl. Sci. 35(8), 976–992 (2012)
Amani, R.J., Kazem, S., Parand, K.: Radial basis functions approach on optimal control problems: a numerical investigation. Journal of Vibration and Control 20(9) (2014)
Kazem, S., Amani, R.J., Parand, K., Shaban, M., Saberi, H.: The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method. Int. J. Comput. Math. 89(16), 2240–2258 (2012)
Parand, K., Hossayni, S.A., Rad, J.A.: Operation matrix method based on Bernstein polynomials for the Riccati differential equation and Volterra population model. Appl. Math. Model. 40(2), 993–1011 (2016)
Amani, R.J., Parand, K., Vincenzo, L.: Pricing European and American options by radial basis point interpolation. Appl. Math. Comput. 251, 363–377 (2015)
Parand, K., Nikarya, M.: Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Appl. Math. Model. 38(15), 4137–4147 (2014)
Merdan, M.: Homotopy Perturbation method for solving a model for HIV infection of \(CD4^+\)T cells.stanbul Ticaret niversitesi (2007)
Ongun, M.Y.: The Laplace Adomian decomposition method for solving a model for HIV infection of \(CD4^+\)T cells. Math. Comput. Model. 53(5), 597–603 (2011)
Merdan, M., Gökdoğan, A., Yildirim, A.: On the numerical solution of the model for HIV infection of \(CD4^+\)T cells. Comput. Math. Appl. 62(1), 118–123 (2011)
Arafa, A., Rida, S., Khalil, M.: Fractional order model of human T-cell Lymphotropic virus I (HTLV-I) infection of \(CD4^+\)T-cells. Adv. Stud. Biol. 3(7), 347–353 (2011)
Ghoreishi, M., Ismail, A.M., Alomari, A.: Application of the Homotopy analysis method for solving a model for HIV infection of \(CD4^+\)T-cells. Math. Comput. Model. 54(11), 3007–3015 (2011)
Gökdoan, A., Yildirim, A., Merdan, M.: Solving a Fractional order model of HIV infection of \(CD4^+\)T cells. Math. Comput. Model. 54(9), 2132–2138 (2011)
Yüzbaşı, Ş.: A numerical approach to solve the model for HIV infection of \(CD4^+\)T cells. Appl. Math. Model. 36(12), 5876–5890 (2012)
Doğan, N.: Numerical treatment of the model for HIV infection of \(CD4^+\)T cells. Dynamics in Nature and Society (2012)
Khan, Y., Vazquez-Leal, H., Wu, Q.: An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23(3–4), 677–682 (2013)
Srivastava, V.K., Awasthi, M.K., Kumar, S.: Numerical approximation for HIV infection of \(CD4^+\)T cells mathematical model. Ain Shams Eng. J. 5(2), 625–629 (2014)
Atangana, A., Doungmo Goufo, E.F.: Computational analysis of the model describing HIV infection of \(CD4^+\)T cells. BioMed research international (2014)
Khalid, M., Sultana, M., Zaidi, F., Khan, F.S.: A numerical solution of a model for HIV infection \(CD4^+\)T cells. Int. J. Innovat. Sci. Res. 16(1), 79–85 (2015)
Yüzbaşı, Ş.: An exponential collocation method for the solutions of the HIV infection model of \(CD4^+\)T cells. Int. J. Biomath. 9(03), 1650 036 (2016)
Namjoo, M., Zibaei, S.: A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of \(CD4^+\)T cells. Iran. J. Math. Chem. 6(2), 169–184 (2015)
Chen, F., Liu, Q.Q.: Adomian decomposition method combined with Padé approximation and Laplace transform for solving a model of HIV infection of \(CD4^+\)T cells. Discrete Dynamics in Nature and Society (2015)
Zurigat, M., Ababneh, M.: Application of the multi-step differential transform method to solve a Fractional human T-cell Lymphotropic virus I (HTLV-I) infection of \(CD4^+\)T cells. J. Math. Appl. 38, 171–180 (2015)
Venkatesh, S., Balachandar, S.R., Ayyaswamy, S., Balasubramanian, K.: A new approach for solving a model for HIV infection of \(CD4^+T\) cells arising in mathematical chemistry using Wavelets. J. Math. Chem. 54(5), 1072–1082 (2016)
Parand, K., Hosseini, L.: Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using Rational Jacobi Collocation method. Int. J. Numer. Methods Heat Fluid Flow 23(5), 772–789 (2013)
Doha, E.H., Bhrawy, A.H., Hafez, R.M., Van Gorder, R.A.: Jacobi Rational-Gauss Collocation method for Lane-Emden equations of Astrophysical significance. Modelling and Control, Nonlinear Analysis (2014)
Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H., Ahmed, E.A., Baleanu, D.: A Jacobi Gauss-Lobatto and Gauss-Radau Collocation algorithm for solving Fractional Fokker-Planck equations. Nonlinear Dyn. 82(3), 1431–1440 (2015)
Bhrawy, A., Alofi, A.: A Jacobi-Gauss Collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 62–70 (2012)
Shen, J., Tang, T., Wang, L.L.: Spectral methods: Algorithms, Analysis and Applications 2011
Szeg, G.: 5, Orthogonal polynomials. American Mathematical Society (1975)
Arafa, A., Rida, S., Khalil, M.: Fractional modeling dynamics of HIV and \(CD4^+\)T cells during primary infection. Nonlinear Biomedical Physics 6(1) (2012)
Parand, K., Rezaei, A., Taghavi, A.: Lagrangian method for solving Lane-Emden type equation arising in Astrophysics on semi-infinite domains. Acta Astronautica 67(7), 673–680 (2010)
Doha, E., Baleanu, D., Bhrawy, A., Hafez, R.: A Pseudospectral algorithm for solving multipantograph delay systems on a semi-infinite interval using Legendre Rational functions. Abstract and Applied Analysis (2014)
Marzban, H., Hoseini, S., Razzaghi, M.: Solution of Volterra’s population model via Block-Pulse functions and Lagrange-interpolating polynomials. Math. Methods Appl. Sci. 32(2), 127–134 (2009)
Mandelzweig, V., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)
Bellman, R.E., Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems (1965)
Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Comm. 141, 268–281 (2001)
Khan, R.A.: The generalized quasilinearization technique for a second order differential equation with separated boundary conditions. Math. Comput. Model. 43(7), 727–742 (2006)
Parand, K., Yousefi, H., Delkhosh, M., Ghaderi, A.: A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation. Eur. Phys. J. Plus 131(7), 1–16 (2016)
El-Gebeily, M., ORegan, D.: A generalized Quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions. J. Comput. Appl. Math. 192(2), 270–281 (2006)
Vatsala, A., Wang, L.: The generalized Quasilinearization method for reaction diffusion equations on an unbounded domain. J. Math. Anal. Appl. 237(2), 644–656 (1999)
El-Gebeily, M., ORegan, D.: A Quasilinearization method for a class of second order singular nonlinear differential equations with nonlinear boundary conditions. Nonlinear Anal. Real World Appl. 8(1), 174–186 (2007)
Atangana, A., Alabaraoye, E.: Solving a system of Fractional partial differential equations arising in the model of HIV infection of \(CD4^+\)T cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 1, 1–14 (2013)
Mandelzweig, V.B., Tabakin, : Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2):268–281 (2001)
Bhrawy, A.H., Alofi, A.S.: A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 62–70 (2012)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that there is no conflict of interest.
Appendix
Appendix
In this Appendix we are going to apply QLM to equations in (1). In first equation in (1), we are coping with
Applying the QLM, we will have
All the i-th step forms are known. So then we can show these forms as
Thus, at the end
Similarly, for the second and third equations in (1), we do the same
For the third equation,
Rights and permissions
About this article
Cite this article
Parand, K., Latifi, S. & Moayeri, M.M. Shifted Lagrangian Jacobi collocation scheme for numerical solution of a model of HIV infection. SeMA 75, 379–398 (2018). https://doi.org/10.1007/s40324-017-0138-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40324-017-0138-9
Keywords
- HIV \(CD4^+\)Tcells
- Shifted-Jacobi polynomials
- Shifted-Jacobi-Gauss-Radau
- Pseudospectral method
- Quasilinearization method
- Weighted Residual method
Mathematics Subject Classification
- 92-08
- 65L60
- 34A34