Advertisement

SeMA Journal

, Volume 75, Issue 1, pp 139–144 | Cite as

A research contribution on an evasion problem

  • Mehdi SalimiEmail author
Article

Abstract

In the present research, we study an evasion differential game with finite number of pursuers and one evader in Hilbert space. The control functions of players are subject to the geometric constraints. We solve the game by presenting an strategy for the evader which guarantees its evasion.

Keywords

Differential game Evasion game Geometric control constraints 

Mathematics Subject Classification

49N75 91A23 

References

  1. 1.
    Chikrii, A.A., Prokopovich, P.V.: Simple pursuit of one evader by a group. Cybern. Syst. Anal. 28(3), 438–444 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Croft, H.T.: Lion and man: a postscript. J. Lond. Math. Soc. 39, 385–390 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Flynn, J.: Lion and man: the boundary constraint. SIAM J. Control 11, 397–411 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ibragimov, G.I., Salimi, M.: Pursuit-evasion differential game with many inertial players. Mathematical Problems in Engineering (2009) (Article ID 653723)Google Scholar
  5. 5.
    Ibragimov, G.I., Salimi, M., Amini, M.: Evasion from many pursuers in simple motion differential game with integral constraints. Eur. J. Oper. Res. 218, 505–511 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Isaacs, R.: Differential Games. Wiley, New York (1965)zbMATHGoogle Scholar
  7. 7.
    Ivanov, R.P.: Simple pursuit-evasion on a compact convex set. Dokl. Akad. Nauk SSSR 254(6), 1318–1321 (1980)MathSciNetGoogle Scholar
  8. 8.
    Petrosyan, L.A.: Differential Pursuit Games. Izdat Leningrad University, Leningrad (1977)zbMATHGoogle Scholar
  9. 9.
    Pshenichii, B.N.: Simple pursuit by several objects. Cybern. Syst. Anal. 12(3), 145–146 (1976)MathSciNetGoogle Scholar
  10. 10.
    Salimi, M., Ibragimov, G.I., Siegmund, S., Sharifi, S.: On a fixed duration pursuit differential game with geometric and integral constraints. Dyn. Games Appl. 6(3), 409–425 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2017

Authors and Affiliations

  1. 1.Center for Dynamics, Department of MathematicsTechnische Universität DresdenDresdenGermany

Personalised recommendations