Skip to main content

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

Abstract

We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abad, M.F., Cordero, A., Torregrosa, J.R.: Fourth and Fifth-order methods for solving nonlinear systems of equations: an application to the global positioning system abstract and applied analysis (2013)

  2. 2.

    Amat, S., Hernández, M.A., Romero, N.: Semilocal convergence of a sixth order iterative method for quadratic equations. Appl. Numer. Math. 62, 833–841 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: studies in computational mathematics, 15. Elsevier, New York (2007)

  4. 4.

    Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80, 327–343 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28, 364–387 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications. World Scientific (2013)

  7. 7.

    Aryros, I.K., Ren, H.: Improved local analysis for certain class of iterative methods with cubic convergence. Numer Algorithm 59, 505–521 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Computing 44, 169–184 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45(4), 355–367 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Chun, C., Stănică, P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Cordero, A., Martinez, F., Torregrosa, J.R.: Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 231, 541–551 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Cordero, A., Hueso, J., Martinez, E., Torregrosa, J.R.: A modified Newton–Tarratt’s composition. Numer. Algor. 55, 87–99 (2010)

    Article  MATH  Google Scholar 

  13. 13.

    Cordero, A., Torregrosa, J.R., Vasileva, M.P.: Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Ezzati, R., Azandegan, E.: A simple iterative method with fifth order convergence by using Potra and Ptak’s method. Math. Sci. 3(2), 191–200 (2009)

    MATH  Google Scholar 

  15. 15.

    Gutiérrez, J.M., Magren̄án, A.A., Romero, N.: On the semi-local convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. 221, 79–88 (2013)

    MathSciNet  Google Scholar 

  16. 16.

    Hasanov, V.I., Ivanov, I.G., Nebzhibov, F.: A new modification of Newton’s method. Appl. Math. Eng. 27, 278–286 (2002)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Hernández, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semi-local convergence of the Chebyshev method. J. Comput. Appl. Math. 126, 131–143 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Jaiswal, J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algor. 71, 933–951 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  20. 20.

    Kou, J.S., Li, Y.T., Wang, X.H.: A modification of Newton method with third-order convergence. Appl. Math. Comput. 181, 1106–1111 (2006)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Magrenan, A.A.: Different anomalies in a Jarratt family of iterative root finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Magrenan, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Petkovic, M.S., Neta, B., Petkovic, L., Džunič, J.: Multipoint methods for solving nonlinear equations. Elsevier, New York (2013)

  24. 24.

    Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes. In: Research Notes in Mathematics, vol. 103. Pitman, Boston (1984)

  25. 25.

    Ren, H., Wu, Q.: Convergence ball and error analysis of a family of iterative methods with cubic convergence. Appl. Math. Comput. 209, 369–378 (2009)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. In: Tikhonov, A.N. et al. (eds.) Mathematical Models and Numerical Methods, pub.3, pp. 129–142. Banach Center, Warsaw (1977)

  27. 27.

    Sharma, J.R., Guha, P.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62(2), 307–323 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Traub, J.F.: Iterative methods for the solution of equations. AMS Chelsea Publishing (1982)

  29. 29.

    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Zhanlar, T., Chulunbaatar, O., Ankhbayar, G.: On Newton-type methods with fourth and fifth-order convergence. Bull. PFUR Ser. Math. Inf. Sci. Phys. 2(2), 29–34 (2010)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shobha M. Erappa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. & Erappa, S.M. Ball convergence for an eighth order efficient method under weak conditions in Banach spaces. SeMA 74, 513–521 (2017). https://doi.org/10.1007/s40324-016-0098-5

Download citation

Keywords

  • Newton’s method
  • Radius of convergence
  • Local convergence

Mathematics Subject Classification

  • 65D10
  • 65D99
  • 65J20