SeMA Journal

, Volume 74, Issue 2, pp 133–146

# Higher order multi-step interval iterative methods for solving nonlinear equations in $$R^n$$

Article

## Abstract

In this paper, higher order multi-step interval iterative methods are proposed for solving nonlinear equations in $$R^n$$. Each method leads to an an interval vector enclosing the approximate solution along with the rigorous error bounds automatically. These methods require solving linear interval systems of equations. Interval extension of Gaussian elimination algorithm is described and used for solving them. The convergence analysis of both the methods is established to show their third and fourth order of convergence. A number of numerical examples are worked out and the performance in terms of iterations count and diameters of resulting interval vectors are measured.

## Keywords

Nonlinear equations Convergence analysis Rigorous error bounds Multi-step methods Boundary value problems Computational efficiency

65G49 65H05

## Notes

### Acknowledgments

The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.

## References

1. 1.
Alefeld, G., Herzberger, J.: Introduction to Interval Computation. Acadamic Press, New York (1983)Google Scholar
2. 2.
Alefeld, G.: On the convergence of some interval-arithmetic modifications of Newton’s method. SIAM J. Numer. Anal. 21, 363–372 (1984)
3. 3.
Alefeld, G., Gienger, A., Potra, F.: Efficent numerical validation of solutions of nonlinear systems. SIAM J. Numer. Anal. 31, 252–260 (1994)
4. 4.
Amat, S., Busquier, S., Gutierrez, G.M.: Geometric construction of itertaive functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)
5. 5.
Bakhtiari, P., Lotfi, T., Mahdiani, K., Soleymani, F.: Interval Ostrowski-type methods with guaranteed convergence. Ann. Univ. Ferrara 59, 221–234 (2013)
6. 6.
Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)
7. 7.
Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Efficient high-order methods based on golden ratio for nonlinear systems. Appl. Math. Comput. 217, 4548–4556 (2011)
8. 8.
Eftekhari, T.: A new proof of interval extension of the classic Ostrowski’s method and its modified method for computing the enclosure solutions of nonlinear equations. Numer. Algorithms (2014). doi:
9. 9.
Gupta, D.K.: Enclosing the solutions of nolinear systems of equations. Int. J. Comput. Math. 73, 389–404 (2000)
10. 10.
Gupta, D.K., Kaul, C.N.: A modification of Krawczyk’s algorithm. Int. J. Comput. Math. 66, 67–77 (1998)
11. 11.
Hansen, E.: A globally convergent interval method for computing and bounding real roots. BIT Numer. Math. 18, 415–424 (1978)
12. 12.
Hansen, E., Greenberg, R.I.: An interval Newton method. Appl. Math. Comput. 12, 289–298 (1983)
13. 13.
Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969)
14. 14.
Madsen, K.: On the solution of nonlinear equations in interval arithmatic. BIT Numer. Math. 13, 428–433 (1973)
15. 15.
Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)
16. 16.
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM, Philadelphia (2009)
17. 17.
Moore, R.E., Jones, S.T.: Safe starting regions for iterative methods. SIAM J. Numer. Anal. 14, 1051–1065 (1977)
18. 18.
Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)Google Scholar
19. 19.
Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces. Academic Press, New-York (1977)Google Scholar
20. 20.
Petković, M.S., Neta, B., Petković, L.D., Dunić, J.: Multipoint methods for solving nonlinear equations: a survey. Appl. Math. Comput. 226, 635–660 (2014)Google Scholar
21. 21.
Petković, M.S., Neta, B., Petković, L.D., Dunić, J.: Multipoint methods for solving nonlinear equations. Academic Press, Elsevier (2013)
22. 22.
Petković, M.S.: Multi-step root solvers of Traub’s type in real interval arithmetic. Appl. Math. Comput. 248, 430–440 (2014)
23. 23.
Rall, L.B.: Computational solution of nonlinear operator equations. Robert E. Krieger, New York (1969)
24. 24.
Rump, S.: INTLABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing. Kluwer Academic Publishers, Dordrecht. 77–104 (1999)Google Scholar
25. 25.
Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)
26. 26.
Traub, J.F.: Iterative methods for the solution of equations. Chelsea Publishing Company, New York (1982)
27. 27.
Wolfe, M.A.: A modification of Krawczyk’s algorithm. SIAM J. Numer. Anal. 17, 376–379 (1980)