Skip to main content
Log in

Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We study the local convergence of a method presented by Cordero et al. of convergence order at least five to approximate a locally unique solution of a nonlinear equation. These studies show the convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analysis of this method is also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69 (2005) 3, 212223

  2. Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 2432 (2010)

  3. Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Argyros, I.K.: Convergence and Application of Newton-Type Iterations. Springer, Berlin (2008)

  5. Argyros, I.K., Hilout, S.: Numerical Methods in Nonlinear Analysis. World Scientific Publ. Comp, New Jersey (2013)

    Google Scholar 

  6. Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

    Article  Google Scholar 

  7. Budzko, D., Cordero, A., Torregrosa, J.R.: A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015)

    Article  MathSciNet  Google Scholar 

  8. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45(4), 355–367 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, Article ID 780153

  11. Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190(2), 1432–1437 (1990)

    Article  MathSciNet  Google Scholar 

  12. Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)

    Article  MATH  Google Scholar 

  17. Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1–8 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3–4), 433–455 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hernández, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999)

    MATH  Google Scholar 

  22. Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20(95), 434–437 (1966)

    Article  MATH  Google Scholar 

  23. Kou, J., Li, Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189, 1816–1821 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kou, J., Wang, X.: Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algorithms 60, 369–390 (2012)

  25. Li, D., Liu, P., Kou, J.: An improvement of the Chebyshev–Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)

    Article  MathSciNet  Google Scholar 

  26. Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Article  MathSciNet  Google Scholar 

  27. Magreñán, Á.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

    Article  MathSciNet  Google Scholar 

  28. Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

  29. Rall, L.B.: Computational solution of nonlinear operator equations. Robert E. Krieger, New York (1979)

    MATH  Google Scholar 

  30. Ren, H., Wu, Q., Bi, W.: New variants of Jarratt method with sixth-order convergence. Numer. Algorithms 52(4), 585–603 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rheinboldt, W.C.: An Adaptive Continuation Process for Solving Systems of Nonlinear Equations, vol. 3. Polish Academy of Science. Banach Ctr. Publ., Polish, pp. 129–142 (1978)

  32. Traub, J.F.: Iterative methods for the solution of equations. In: Prentice- Hall Series in Automatic Computation. Englewood Cliffs, NJ (1964)

  33. Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the project MTM2014-52016-C2-1-P of Spanish Ministry of Economy and Competitiveness and by the Universidad Internacional de La Rioja (UNIR, http://www.unir.net), under the Plan Propio de Investigación, Desarrollo e Innovación [2013–2015]. Research group: Matemática aplicada al mundo real (MAMUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Alberto Magreñán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberto Magreñán, Á., Argyros, I.K. Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations. SeMA 71, 39–55 (2015). https://doi.org/10.1007/s40324-015-0047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-015-0047-8

Keywords

Mathematics Subject Classification

Navigation