Skip to main content
Log in

\(\pmb {\mathscr {L}}\)-invariants of Artin motives

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

R\'esum\'e

We compute Benois \({\mathscr {L}}\)-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ p-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is p-regular, as it then amounts to the choice of a “motivic” p-refinement. The situation is dramatically different in the p-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.

Résumé

Nous calculons les \({\mathscr {L}}\)-invariants de Benois attachés aux formes paraboliques de poids 1 ainsi qu’à leurs représentations adjointes, et nous montrons que cela étend le régulateur p-adique de Gross aux motifs d’Artin qui ne sont pas critiques au sens de Deligne. La construction de Benois dépend du choix d’un sous-module régulier, qui est bien compris lorsque la représentation est p-régulière, puisque cela revient au choix d’un p-raffinement “motivique”. La situation est radicalement différente dans le cas p-irrégulier, où les sous-modules réguliers sont paramétrés par une variété de drapeaux et dépendent ainsi de paramètres continus. Nous arrivons néanmoins à montrer dans quelques exemples comment la théorie de Hida et la géométrie de la courbe de Hecke permettent de détecter un nombre fini de choix de nature arithmétique et “mixte-motivique”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The definition of \(L_p(V,D,s)\), resp. \(L_p(W,D^\perp ,s)\), depends on the choice of a Galois stable lattice in V, resp. D, but \({\mathscr {L}}(V,D)\), resp. \({\mathscr {L}}(W,D^\perp )\), does not, hence our abuse of notation.

References

  1. J. Bellaïche, The eigenbook—eigenvarieties, families of Galois representations, \(p\)-adic\(L\)-functions, Pathways in Mathematics, Birkhäuser/Springer, Cham, 2021.

  2. J. Bellaïche and M. Dimitrov, On the eigencurve at classical weight 1 points, Duke Math. J., 165 (2016), pp. 245–266.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Benois, A generalization of Greenberg’s\({\cal{L}}\)-invariant, Amer. J. Math., 133 (2011), pp. 1573–1632.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Benois, On extra zeros of\(p\)-adic\(L\)-functions: the crystalline case, in Iwasawa theory 2012, vol. 7 of Contrib. Math. Comput. Sci., Springer, Heidelberg, 2014, pp. 65–133.

  5. D. Benois and S. Horte, On extra zeros of p-adic Rankin-Selberg\(L\)-functions, arXiv:2009.01096, (2020).

  6. L. Berger, Équations différentielles\(p\)-adiques et\((\phi ,N)\)-modules filtrés, Astérisque, 319 (2008), pp. 13–38. Représentations \(p\)-adiques de groupes \(p\)-adiques. I. Représentations galoisiennes et \((\phi ,\Gamma )\)-modules.

  7. A. Betina and M. Dimitrov, Geometry of the eigencurve at CM points and trivial zeros of Katz\(p\)-adic\(L\)-functions, Adv. Math., 384 (2021), Article no. 107724.

  8. A. Betina and M. Dimitrov, A geometric view on Iwasawa theory, J. Théorie Nombres Bordeaux, 33 (2021), pp. 703–731.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Bley, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field, Doc. Math., 11 (2006), pp. 73–118.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bloch and K. Kato, \(L\)-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, vol. 86 of Progr. Math., Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.

  11. A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), pp. 121–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Buyukboduk and R. Sakamoto, On the non-critical exceptional zeros of Katz\(p\)-adic\({L}\)-functions for CM fields, Adv. Math. 406 (2022), Article no. 108478.

  13. F. Calegari and B. Mazur, Nearly ordinary Galois deformations over arbitrary number fields, J. Inst. Math. Jussieu, 8 (2009), pp. 99–177.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Chida and M.-L. Hsieh The derivative formula of p-adic L-functions for imaginary quadratic fields at trivial zeros, Ann. Math. Québec, (2022). https://doi.org/10.1007/s40316-022-00198-6.

  15. P. Colmez, Fonctions\(L\)\(p\)-adiques, Astérisque, 266 (2000), pp. Exp. No. 851, 3, 21–58. Séminaire Bourbaki, Vol. 1998/99.

  16. H. Darmon, A. Lauder, and V. Rotger, Gross-Stark units and\(p\)-adic iterated integrals attached to modular forms of weight one, Ann. Math. Qué., 40 (2016), pp. 325–354.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Darmon, A. Lauder, and V. Rotger, First order\(p\)-adic deformations of weight one newforms, in L-functions and automorphic forms, vol. 10 of Contrib. Math. Comput. Sci., Springer, Cham, 2017, pp. 39–80.

  18. S. Dasgupta, Factorization of\(p\)-adic Rankin\(L\)-series, Invent. Math., 205 (2016), pp. 221–268.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Deligne and K. A. Ribet, Values of abelian\(L\)-functions at negative integers over totally real fields, Invent. Math., 59 (1980), pp. 227–286.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. J. Federer and B. H. Gross, Regulators and Iwasawa modules, Invent. Math., 62 (1981), pp. 443–457. With an appendix by Warren Sinnott.

  21. B. Ferrero and R. Greenberg, On the behavior of\(p\)-adic\(L\)-functions at\(s=0\), Invent. Math., 50 (1978/79), pp. 91–102.

  22. J.-M. Fontaine, Sur certains types de représentations\(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2), 115 (1982), pp. 529–577.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Greenberg, On a certain\(l\)-adic representation, Invent. Math., 21 (1973), pp. 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Greenberg, On\(p\)-adic Artin\(L\)-functions II, in Iwasawa theory 2012, vol. 7 of Contrib. Math. Comput. Sci., Springer, Heidelberg, 2014, pp. 227–245.

  25. B. H. Gross, \(p\)-adic\(L\)-series at\(s=0\), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), pp. 979–994 (1982).

  26. L. Herr, Sur la cohomologie galoisienne des corps\(p\)-adiques, Bull. Soc. Math. France, 126 (1998), pp. 563–600.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Hida, A\(p\)-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble), 38 (1988), pp. 1–83.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Maksoud, Théorie d’Iwasawa des motifs d’Artin et des formes modulaires de poids 1, arXiv:1811.05368, (2019).

  29. B. Perrin-Riou, Fonctions\(L\)\(p\)-adiques des représentations\(p\)-adiques, Astérisque, 229 (1995), p. 198.

    MATH  Google Scholar 

  30. O. Rivero and V. Rotger, Derived Beilinson-Flach elements and the arithmetic of the adjoint of a modular form, J. Eur. Math. Soc. (JEMS), 23 (2021), pp. 2299–2335.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Rubin, Euler systems, vol. 147 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study.

  32. C.-G. Schmidt, \(p\)-adic measures attached to automorphic representations of\({\rm GL}(3)\), Invent. Math., 92 (1988), pp. 597–631.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.-P. Serre, Cohomologie galoisienne, vol. 5 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, fifth ed., 1994.

  34. J. Tate, Les conjectures de Stark sur les fonctions\(L\)d’Artin en\(s=0\), vol. 47 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1984. Lecture notes edited by Dominique Bernardi and Norbert Schappacher.

Download references

Acknowledgements

The authors are mostly indebted to D. Benois for numerous discussions related to this project. We would like also to thank A. Betina and J. Bellaïche for helpful discussions, as well as the the anonymous referee for the carefully reading of the manuscript and numerous comments. The research leading to this article is jointly funded by the Agence Nationale de Recherche ANR-18-CE40-0029 and the Fonds National de Recherche Luxembourg INTER/ANR/18/12589973 in the project Galois representations, automorphic forms and their L-functions (GALF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Dimitrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To Bernadette Perrin-Riou on the occasion of her 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrov, M., Maksoud, A. \(\pmb {\mathscr {L}}\)-invariants of Artin motives. Ann. Math. Québec 47, 49–71 (2023). https://doi.org/10.1007/s40316-022-00201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-022-00201-0

Keywords

Mathematics Subject Classification

Navigation