Skip to main content
Log in

On abelian \(\ell \)-towers of multigraphs III

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Let \(\ell \) be a rational prime. Previously, abelian \(\ell \)-towers of multigraphs were introduced which are analogous to \(\mathbb {Z}_{\ell }\)-extensions of number fields. It was shown that for towers of bouquets, the growth of the \(\ell \)-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for \(\mathbb {Z}_{\ell }\)-extensions of number fields). In this paper, we extend this result to abelian \(\ell \)-towers over an arbitrary connected multigraph (not necessarily simple and not necessarily regular). In order to carry this out, we employ integer-valued polynomials to construct power series with coefficients in \(\mathbb {Z}_\ell \) arising from cyclotomic number fields, different than the power series appearing in the prequel. This allows us to study the special value at \(u=1\) of the Artin–Ihara L-function, when the base multigraph is not necessarily a bouquet.

Résumé

Soit \(\ell \) un nombre premier rationnel. Dans un article précédent, les \(\ell \)-tours abéliennes de multigraphes furent introduites qui peuvent être vues comme étant analogues aux \(\mathbb {Z}_{\ell }\)-extensions de corps de nombres. Il fut démontré que pour les tours de bouquets, la valuation \(\ell \)-adique du nombre d’arbres couvrants varie de façon prévisible (de manière analogue à un théorème connu d’Iwasawa pour les \(\mathbb {Z}_{\ell }\)-extensions de corps de nombres). Dans cet article, nous généralisons ce résultat aux \(\ell \)-tours abéliennes d’un multigraphe connexe quelconque (non nécessairement simple et non nécessairement regulier). Afin d’accomplir ce but, nous utilisons les polynômes à valeurs entières pour construire des séries entières à coefficients dans \(\mathbb {Z}_{\ell }\) provenant des corps cyclotomiques, différentes des séries entières apparaissant dans l’article précédent. Ceci nous permet d’étudier la valeur spéciale en \(u=1\) des fonctions L d’Artin-Ihara quand le multigraphe de base n’est pas nécessairement un bouquet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul-Jean Cahen and Jean-Luc Chabert. What you should know about integer-valued polynomials. Amer. Math. Monthly, 123(4):311–337, 2016.

    Article  MathSciNet  Google Scholar 

  2. Robert F. Coleman. Division values in local fields. Invent. Math., 53(2):91–116, 1979.

    Article  ADS  MathSciNet  Google Scholar 

  3. H. S. M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc., 56:413–455, 1950.

    Article  MathSciNet  Google Scholar 

  4. Ronald M. Foster. The Foster census. Charles Babbage Research Centre, Winnipeg, MB, 1988. R. M. Foster’s census of connected symmetric trivalent graphs, With a foreword by H. S. M. Coxeter, With a biographical preface by Seymour Schuster, With an introduction by I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, Edited and with a note by Bouwer.

  5. Sophia Rose Gonet. Jacobians of Finite and Infinite Voltage Covers of Graphs. ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–The University of Vermont and State Agricultural College.

  6. Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1987 original [Wiley, New York; MR0898434 (88h:05034)] with a new preface and supplementary bibliography.

  7. Ki-ichiro Hashimoto. Zeta functions of finite graphs and representations of \(p\)-adic groups. In Automorphic forms and geometry of arithmetic varieties, volume 15 of Adv. Stud. Pure Math., pages 211–280. Academic Press, Boston, MA, 1989.

  8. Kenkichi Iwasawa. On \(\Gamma \)-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65:183–226, 1959.

    Article  MathSciNet  Google Scholar 

  9. Kenkichi Iwasawa. On \(\mathbb{Z}_{l}\)-extensions of algebraic number fields. Ann. of Math. (2), 98:246–326, 1973.

  10. Dino Lorenzini. Smith normal form and Laplacians. J. Combin. Theory Ser. B, 98(6):1271–1300, 2008.

    Article  MathSciNet  Google Scholar 

  11. Kevin J. McGown and Daniel Vallières. On abelian \(\ell \)-towers of multigraphs II. To appear in Annales Mathématiques du Québec, 2021.

  12. Sam Northshield. A note on the zeta function of a graph. J. Combin. Theory Ser. B, 74(2):408–410, 1998.

    Article  MathSciNet  Google Scholar 

  13. George Pólya and Gábor Szegő. Problems and theorems in analysis II. Classics in Mathematics. Springer-Verlag, Berlin, 1998. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Translated from the German by C. E. Billigheimer, Reprint of the 1976 English translation.

  14. Jean-Pierre Serre. Classes des corps cyclotomiques (d’après K. Iwasawa). In Séminaire Bourbaki, Vol. 5, pages Exp. No. 174, 83–93. Soc. Math. France, Paris, 1995.

  15. William Stein. Sage: Open Source Mathematical Software (Version 8.5). The Sage Group, 2018. Available from http://www.sagemath.org.

  16. Toshikazu Sunada. Topological crystallography, volume 6 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, Tokyo, 2013. With a view towards discrete geometric analysis.

  17. Audrey Terras. Zeta functions of graphs, volume 128 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2011. A stroll through the garden.

  18. The PARI Group, Bordeaux. PARI/GP, version 2.9.1, 2016. Available from http://pari.math.u-bordeaux.fr/.

  19. Daniel Vallières. On abelian \(\ell \)-towers of multigraphs. Ann. Math. Qué., 45(2):433–452, 2021.

    Article  MathSciNet  Google Scholar 

  20. Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.

  21. Mark E. Watkins. A theorem on Tait colorings with an application to the generalized Petersen graphs. J. Combinatorial Theory, 6:152–164, 1969.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vallières.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGown, K., Vallières, D. On abelian \(\ell \)-towers of multigraphs III. Ann. Math. Québec 48, 1–19 (2024). https://doi.org/10.1007/s40316-022-00194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-022-00194-w

Keywords

Mathematics Subject Classification

Navigation