Skip to main content
Log in

Various formulations and approximations of incompressible fluid motions in porous media

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We first recall various formulations and approximations for the motion of an incompressible fluid, in the well-known setting of the Euler equations. Then, we address incompressible motions in porous media, through the Muskat system, which is a friction dominated first order analog of the Euler equations for inhomogeneous incompressible fluids subject to an external potential.

Résumé

On commence par rappeler plusieurs formulations et approximations décrivant le mouvement d’un fluide incompressible dans le cadre bien connu des équations d’Euler. On s’intéresse ensuite aux mouvements incompressibles en milieux poreux, au travers du système de Muskat, qui est un analogue du premier ordre, dominé par la friction, des équations d’Euler pour des fluides incompressibles inhomogènes soumis à un potentiel extérieur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Ambrosio, A. Figalli, On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations, Calc. Var. Partial Differential Equations 31 (2008) 497-509.

    Article  MathSciNet  Google Scholar 

  2. L. Ambrosio, A. Figalli, Geodesics in the space of measure-preserving maps and plans, Archive for Rational Mechanics and Analysis 194 (2009) 421-462.

    Article  MathSciNet  Google Scholar 

  3. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits, Ann. Institut Fourier 16 (1966) 319-361.

    Article  MathSciNet  Google Scholar 

  4. V. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York 1998.

    Book  Google Scholar 

  5. A. Baradat, Continuous dependence of the pressure field with respect to endpoints for ideal incompressible fluids, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Art. 25, 22

  6. A. Baradat, Nonlinear instability in Vlasov type equations around rough velocity profiles, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020) 489-547.

    Article  MathSciNet  Google Scholar 

  7. A. Baradat, L. Monsaingeon, Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport, Arch. Ration. Mech. Anal. 235 (2020) 1357-1403.

    Article  MathSciNet  Google Scholar 

  8. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris I Math. 305 (1987) 805-808.

  9. Y. Brenier, A combinatorial algorithm for the Euler equations of incompressible flows, Comput. Methods Appl. Mech. Engrg. 75 (1989) 325-332.

    Article  MathSciNet  Google Scholar 

  10. Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J.of the AMS 2 (1989) 225-255.

    MathSciNet  MATH  Google Scholar 

  11. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991) 375-417.

    Article  MathSciNet  Google Scholar 

  12. Y. Brenier, Minimal geodesics on groups of volume-preserving maps, Comm. Pure Appl. Math. 52 (1999) 411-452.

    Article  MathSciNet  Google Scholar 

  13. Y. Brenier, Extended Monge-Kantorovich theory, Optimal transportation and applications, pp. 91-121, Lecture Notes in Math., 1813, Springer 2003.

  14. Y. Brenier, Remarks on the Minimizing Geodesic Problem in Inviscid Incompressible Fluid Mechanics, Calc. Var. Partial Differential Equations 47 (2013) 55-64.

    Article  MathSciNet  Google Scholar 

  15. Y. Brenier, W. Gangbo, \(L^p\)approximation of maps by diffeomorphisms, Calc. Var. Partial Differential Equations 16 (2003) 147-164.

    Article  MathSciNet  Google Scholar 

  16. C. Dafermos, Hyperbolic conservation laws in continuum physics, Fourth edition, Springer-Verlag, Berlin, 2016.

  17. D. Dauvergne, The Archimedean limit of random sorting networks,arXiv:1802.08934

  18. D. Dauvergne, B. Virág, Circular support in random sorting networks, Trans. Am. Math. Soc. 373 (2020) 1529-1553.

    Article  MathSciNet  Google Scholar 

  19. C. De Lellis, L. Székelyhidi Jr, The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009) 1417-1436.

  20. D. Ebin, J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. 92 (1970) 102-163.

    Article  MathSciNet  Google Scholar 

  21. Y.Eliashberg, T.Ratiu, The diameter of the symplectomorphism group is infinite, Invent. Math. 103 (1991) 327-340.

    Article  MathSciNet  Google Scholar 

  22. N. Gigli, F. Otto, Entropic Burgers’ equation via a minimizing movement scheme based on the Wasserstein metric, Calc. Var. Partial Differential Equations 47 (2013) 181-206.

    Article  MathSciNet  Google Scholar 

  23. R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc. 7 (1982) 65-222.

    Article  MathSciNet  Google Scholar 

  24. H. Lavenant, Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation, Calc. Var. Partial Differential Equations 56 (2017) Art. 170, 29 pp.

  25. R. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001) 589-608.

    Article  MathSciNet  Google Scholar 

  26. Y. Neretin, Categories of bistochastic measures and representations of some infinite-dimensional groups, Sb. 183 (1992), no. 2, 52-76.

    MATH  Google Scholar 

  27. F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach, Comm. Pure Appl. Math. 52 (1999) 873-915.

    Article  MathSciNet  Google Scholar 

  28. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001) 101-174.

    Article  MathSciNet  Google Scholar 

  29. M. Rahman, B. Virág, M. Vizer, Geometry of Permutation Limits, Combinatorica 39 (2019) 933-960

    Article  MathSciNet  Google Scholar 

  30. A. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Math. Sbornik USSR 56 (1987) 79-105.

    Article  Google Scholar 

  31. A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal. 4 (1994) 586-620.

    Article  MathSciNet  Google Scholar 

  32. A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50 (1997) 1261-1286.

    Article  MathSciNet  Google Scholar 

  33. L. Székelyhidi, Relaxation of the incompressible porous media equation, Ann. Sci. Ec. Norm. Supér. (4) 45 (2012) 491-509.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Brenier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenier, Y. Various formulations and approximations of incompressible fluid motions in porous media. Ann. Math. Québec 46, 195–206 (2022). https://doi.org/10.1007/s40316-021-00178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00178-2

Keywords

Navigation