Skip to main content
Log in

Distinguished limits and drifts: between nonuniqueness and universality

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

This paper deals with a version of the two-timing method which describes various ‘slow’ effects caused by externally imposed ‘fast’ oscillations. Such small oscillations are often called vibrations and the research area can be referred as vibrodynamics. The governing equations represent a generic system of first-order ODEs containing a prescribed oscillating velocity \({\varvec{u}}\), given in a general form. Two basic small parameters stand in for the inverse frequency and the ratio of two time-scales; they appear in equations as regular perturbations. The proper connections between these parameters yield the distinguished limits, leading to the existence of closed systems of asymptotic equations. The aim of this paper is twofold: (i) to clarify (or to demystify) the choices of a slow variable, and (ii) to give a coherent exposition which is accessible for practical users in applied mathematics, sciences and engineering. We focus our study on the usually hidden aspects of the two-timing method such as the uniqueness or multiplicity of distinguished limits and universal structures of averaged equations. The main result is the demonstration that there are two (and only two) different distinguished limits. The explicit instruction for practically solving ODEs for different classes of \({\varvec{u}}\) is presented. The key roles of drift velocity and the qualitatively new appearance of the linearized equations are discussed. To illustrate the broadness of our approach, two examples from mathematical biology are shown.

Résumé

Cet article traite d’une version de la méthode à deux temps qui décrit divers effets ”lents” causés par des oscillations ”rapides” imposées de l’extérieur. Ces petites oscillations sont souvent appelées vibrations et le domaine de recherche peut être appelé vibrodynamique. Les équations gouvernantes considérées représentent un système générique d’EDOs du premier ordre, contenant une vitesse d’oscillation prescrite \({\varvec{u}}\), donnée sous une forme générale. Deux petits paramètres de base représentent la fréquence inverse et le rapport de deux échelles de temps ; ils apparaissent dans les équations sous forme de perturbations régulières. Les connexions appropriées entre ces paramètres donnent les limites distinguées, menant à l’existence de systèmes fermés d’équations asymptotiques. L’objectif de cet article est double : (i) clarifier les choix de la variable lente, et (ii) donner une exposition cohérente de la méthode, appliquée à la vibrodynamique. Nous concentrons notre étude sur les aspects habituellement cachés de la méthode à deux temps, tels que l’unicité ou la multiplicité des limites distinguées et les structures universelles des équations moyennées. Le résultat principal est la démonstration qu’il existe deux (et seulement deux) limites distinguées différentes. L’instruction explicite pour la manipulation pratique des EDOs pour différentes classes de \({\varvec{u}}\) est présentée. Les rôles clés de la vitesse de dérive sont discutés. Pour illustrer l’étendue de notre approche, deux exemples issus de la biologie mathématique sont présentés. Cet article est accessible aux étudiants en mathématiques appliquées, en physique et en génie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I. Neishtadt, A. and Kozlov, V.V. 2006 Mathematical Aspects of Classical and Celestial Mechanics, H. Systems, Encyclopaedia of Mathematical Sciences, Vol. 3 Dynamical -3. Springer.

  2. Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge: CUP.

    MATH  Google Scholar 

  3. Blekhman, I.I. 2000 Vibrational Mechanics. Singapore: World Scientific.

    Book  Google Scholar 

  4. Blekhman, I.I. (ed). 2004 Selected Topics in Vibrational Mechanics. Singapore, World Scientific.

    MATH  Google Scholar 

  5. Bogoliubov, N.N. and Mitropolskii,Y.A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations. NY, Gordon and Beach.

    Google Scholar 

  6. Craik, A.D.D. 1982 The drift velocity of water waves. J. of Fluid Mech., 116, 187-205.

    Article  MathSciNet  Google Scholar 

  7. Eames, I. & McIntyre, M.E. 1999 On the connection between Stokes drift and Darwin drift. Mathematical Proceedings of the Cambridge Philosophical Society 126, 1, 171-174. J. Fluid Mech., 116, 187-205.

  8. Grimshaw, R. 1990 Nonlinear Ordinary Differential Equations. Blackwell, Oxford, England.

    MATH  Google Scholar 

  9. Hinch, E.J. 1991 Perturbation Methods. CUP.

  10. Kapikjan, A.K. and Levenshtam, V.B. 2008 Partial differential equation of first order, containing large high-frequency terms. Journal of Comput. Math. and Math. Physics, 48(11), 2024-2041 (in Russian).

  11. Kapitza, P.L. 1951 Dynamical stability of a pendulum when its point of suspension vibrates Zhurnal Eksperimental’noi i Teoreticheskoi Fisiki 1951, 21, 588-599 (in Russian). Translated in D. ter Haar (ed.) Collected Papers by P.L.Kapitza 1965, 2, 714-725, London: Pergamon Press.

  12. Kapitza, P.L. 1951 Pendulum with a vibrating suspension Uspekhi Fizicheskih Nauk 1951, 44, 7-17 (in Russian). Translated in D. ter Haar (ed.) Collected Papers by P.L.Kapitza 1965, 2, 726-737, London: Pergamon Press.

  13. Kevorkian, J. & Cole J.D. 1996, Multiple Scale and Singular Perturbation Techniques. Springer, New York.

    Book  Google Scholar 

  14. Klein, R., Botta, N., and Owinoh, A. Z. 2001, Distinguished limits, multiple scales asymptotics, and numerics for atmospheric flows. In: 13th Conference on Atmospheric and Oceanic Fluid Dynamics, American Meteorological Society, Breckenridge, Colorado.

  15. Krylov, N.M. and Bogoliubov, N.N. 1947 Introduction to Non-Linear Mechanics. A Free translation by Solomon Lefschetz of excerpts from two Russian monographs. Annals of Mathematics Studies, 11, Princeton, Princeton University Press.

  16. Lamb, H. 1932 Hydrodynamics. Sixth edition, Cambridge, CUP.

    MATH  Google Scholar 

  17. Levenshtam, V.B. 2008 Differential equations containing large high-frequency terms. Rostov-on-Don, Southern Federal University Press (in Russian).

    MATH  Google Scholar 

  18. Monismith, S.G. 2020 Stokes drift: theory and experiments. Journal of Fluid Mechanics, 884.

  19. Murray, J.D. 1989, Mathematical Biology. Berlin, Springer.

    Book  Google Scholar 

  20. Morgulis, A.B., & Ilin, K.I. 2020 Indirect Taxis on a Fluctuating Environment. Mathematics, 8(11), 2052.

    Article  Google Scholar 

  21. Murdock, J. 1994 Some foundational issues in multiple scale theory. Applicable Analysis, 53:3-4, 157-173.

    Article  MathSciNet  Google Scholar 

  22. Murdock, J. & Wang, L.C. 1996 Validity of the multiple scale method for very long intervals. Z. angew. Math. Phys. 47, 760–789.

    Article  MathSciNet  Google Scholar 

  23. Nayfeh, A.H. 1973 Perturbation Methods. NY, John Wiley & Sons.

  24. O’Malley R.E. 2014 Two-Timing, Geometric, and Multi-scale Methods. In: Historical Developments in Singular Perturbations. Cham.: Springer.

  25. Sanders, J.A., Verhulst, F. and Murdock, J. 2007 Averaging methods in nonlinear dynamical systems. Springer.

  26. Simonenko, I.B. 1972 Justification of averaging method for convection problem in the field of rapidly oscillating forces and for other parabolic equations. Math. Sbornik, 87(129), 2, 236-253 (in Russian).

  27. Stokes, G.G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc., 8, 441-455 (Reprinted in Math. Phys. Papers, 1, 197-219).

  28. Strogatz, S.H. 2015 Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Boca Raton, CRC Press.

    MATH  Google Scholar 

  29. Thomsen, J.J. 2003 Vibrations and Stability Advanced Theory, Analysis, and Tools. Springer.

  30. Van Den Bremer, T. S. & Breivik, ø. 2018 Stokes drift. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2111), 20170104.

    Article  MathSciNet  Google Scholar 

  31. Verhulst, F. 2005 Methods and applications of singular perturbations: boundary layers and multiple timescale dynamics. Springer.

  32. Vladimirov, V.A. 2005 Vibrodynamics of pendulum and submerged solid. J. of Math. Fluid Mech. 7, S397-412.

    Article  MathSciNet  Google Scholar 

  33. Vladimirov, V.A. 2010 Admixture and drift in oscillating fluid flows. arXiv preprint arXiv:1009.4058.

  34. Vladimirov, V.A. 2012 Magnetohydrodynamic drift equations: from Langmuir circulations to magnetohydrodynamic dynamo? J. of Fluid Mech., 698, 51-61.

    Article  MathSciNet  Google Scholar 

  35. Vladimirov, V.A. 2013a Dumbbell micro-robot driven by flow oscillations. J. Fluid Mech. 717, R8-1-716 R8-11.

  36. Vladimirov, V.A. 2013b Self-propulsion velocity of N-sphere micro-robot. J. Fluid Mech. 716, R1-1-716 R1-11

  37. Vladimirov, V.A., Proctor, M.R.E. and Hughes, D.W 2015, Vortex dynamics of oscillating flows. Arnold Math J., 239, 2, 113-126.

    Article  MathSciNet  Google Scholar 

  38. Vladimirov, V.A. 2017 Two-Timing Hypothesis, Distinguished Limits, Drifts, and Pseudo-Diffusion for Oscillating Flows. Studies in Applied Mathematics 138, (3), 269-293.

    Article  MathSciNet  Google Scholar 

  39. Vladimirov, V. A. 2020 Distinguished Limits and Vibrogenic Force revealed by Newton’s Equation with Oscillating Force. arXiv preprint https://arxiv.org/abs/2001.10369.

  40. Yudovich, V.I. 2006 Vibrodynamics and vibrogeometry of mechanical systems with constraints. Uspehi Mekhaniki, 4, 3, 26-58 (in Russian).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Profs. A.D.D.Craik, I. Eltayeb, K.I.Ilin, D.W.Hughes, D. Kapanadze, H.K.Moffatt, M.T.Montgomery, A.B.Morgulis, T.J. Pedley, M.R.E.Proctor, A.I. Shnilerman and V.I.Yudovich for discussions, and to Mr. A.A.Aldrick for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vladimirov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, V.A. Distinguished limits and drifts: between nonuniqueness and universality. Ann. Math. Québec 46, 77–91 (2022). https://doi.org/10.1007/s40316-021-00177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00177-3

Keywords

Navigation