Advertisement

\(\hbox {K}_{1}\)-congruences for three-dimensional Lie groups

  • Daniel Delbourgo
  • Qin Chao
Article
  • 30 Downloads

Abstract

We completely describe \(\hbox {K}_{1}({\mathbb {Z}}_p[\![{\mathcal {G}}_{\infty }]\!])\) and its localisations by using an infinite family of p-adic congruences, where \({\mathcal {G}}_{\infty }\) is any solvable p-adic Lie group of dimension 3. This builds on earlier work of Kato when \(\hbox {dim}({\mathcal {G}}_{\infty })=2\), and of the first named author and Lloyd Peters when \({\mathcal {G}}_{\infty } \cong {\mathbb {Z}}_p^{\times }\ltimes {\mathbb {Z}}_p^d\) with a scalar action of \({\mathbb {Z}}_p^{\times }\). The method exploits the classification of 3-dimensional p-adic Lie groups due to González-Sánchez and Klopsch, as well as the fundamental ideas of Kakde, Burns, etc. in non-commutative Iwasawa theory.

Keywords

Iwasawa theory K-theory p-adic L-functions Galois representations 

Résumé

Nous décrivons complètement K\(_{1}(\mathbb {Z}_p[\![\mathcal {G}_{\infty }]\!])\) et ses localisations en utilisant une famille infinie de congruences p-adiques, où \(\mathcal {G}_{\infty }\) est un groupe de Lie résoluble de dimension trois. Ce travail s’appuie sur les résultats de Kato lorsque \({\hbox {dim}}(\mathcal {G}_{\infty })=2\), et du premier auteur et Lloyd Peters lorsque \(\mathcal {G}_{\infty }\cong \mathbb {Z}_p^{\times }\ltimes \mathbb {Z}_p^d\) avec une action scalaire de \(\mathbb {Z}_p^{\times }\). La méthode exploite la classification des groupes de Lie de dimension trois due à González-Sánchez et Klopsch, ainsi que les idées fondamentales de Kakde, Burns etc. en théorie d’Iwasawa non-commutative.

Mathematics Subject Classification

11R23 11G40 19B28 

Notes

Acknowledgements

The authors are grateful to both Antonio Lei and Lloyd Peters for numerous discussions about non-commutative congruences. They were also hugely inspired by the work of Mahesh Kakde, to which many arguments in this paper owe a great debt. Lastly they thank Ian Hawthorn for his friendly guidance during some difficult times.

References

  1. 1.
    Bouganis, A.: Special values of \(L\)-functions and false Tate curve extensions. J. Lond. Math. Soc. 82, 596–620 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burns, D.: On main conjectures in non-commutative Iwasawa theory and related conjectures. J. Reine Angew. Math. 698, 105–159 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Burns, D., Venjakob, O.: On descent theory and main conjectures in non-commutative Iwasawa theory. J. Inst. Math. Jussieu 10, 59–118 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta \(p\)-adiques. Invent. Math. 51(1), 29–59 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chao, Q.: Iwasawa theory over solvable three-dimensional \(p\)-adic Lie extensions, PhD Thesis, Waikato University (2018)Google Scholar
  6. 6.
    Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The GL\(_2\) main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES 101, 163–208 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Noncommutative Iwasawa main conjectures over totally real fields. In: Coates, J., Schneider, P., Sujatha, R., Venjakob, O. (eds.) Proceedings of the Münster Workshop on Iwasawa Theory, vol. 29. Springer Verlag PROMS (2013)Google Scholar
  8. 8.
    Darmon, H., Tian, Ye: Heegner points over towers of Kummer extensions. Can. J. Math. 62(5), 1060–1081 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Delbourgo, D., Lei, A.: Estimating the growth in Mordell–Weil ranks and Shafarevich–Tate groups over Lie extensions. Raman. J. 43(1), 29–68 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Delbourgo, D., Peters, L.: Higher order congruences amongst Hasse–Weil \(L\)-values. J. Aust. Math. Soc. 98, 1–38 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Delbourgo, D., Ward, T.: Non-abelian congruences between \(L\)-values of elliptic curves. Ann. de l’Inst. Fourier 58(3), 1023–1055 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delbourgo, D., Ward, T.: The growth of CM periods over false Tate extensions. Exp. Math. 19(2), 195–210 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Delbourgo, D.: On the growth of \(\mu \)-invariants and \(\lambda \)-invariants attached to motives, work in progressGoogle Scholar
  14. 14.
    Deligne, P., Ribet, K.: Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    González-Sánchez, J., Klopsch, B.: Analytic pro-\(p\) groups of small dimensions. J. Group Theory 12(5), 711–734 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hara, T.: Iwasawa theory of totally real fields for certain non-commutative \(p\)-extensions. J. Number Theory 130, 1068–1097 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kakde, M.: The main conjecture of Iwasawa theory for totally real fields. Invent. Math. 193(3), 539–626 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kakde, M.: Some congruences for non-CM elliptic curves, in ‘Elliptic curves, modular forms and Iwasawa theory’. Springer Proc. Math. Stat. 188, 295–309 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kato, K.: \(K_1\) of some non-commutative completed group rings. K-Theory 34, 99–140 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kato, K.: Iwasawa theory of totally real fields for Galois extensions of Heisenberg type, unpublished preprint (2006)Google Scholar
  21. 21.
    Kim, D.: On the transfer congruence between \(p\)-adic Hecke \(L\)-functions. Cambr. J. Math. 3(3), 355–438 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Oliver, R.: Whitehead groups of finite groups, LMS Lecture Note Series vol. 132, Cambridge University Press (1988)Google Scholar
  23. 23.
    Ritter, J., Weiss, A.: On the ‘main conjecture’ of equivariant Iwasawa theory. J. Am. Math. Soc. 24, 1015–1050 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Serre, J.-P.: Linear representations of finite groups, Springer Verlag GTM vol. 42, first edition (1977)Google Scholar

Copyright information

© Fondation Carl-Herz and Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations