Skip to main content
Log in

Refined analytic torsion as analytic function on the representation variety and applications

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We prove that refined analytic torsion on a manifold with boundary is a weakly holomorphic section of the determinant line bundle over the representation variety. As a fundamental application we establish a gluing formula for refined analytic torsion on connected components of the complex representation space which contain a unitary point. Finally we provide a new proof of Brüning-Ma gluing formula for the Ray–Singer torsion associated to a non-Hermitian connection. Our proof is quite different from the one given by Brüning and Ma and uses a temporal gauge transformation.

Résumé

On démontre que la torsion analytique fine sur une variété à bord est une section faiblement holomorphe du fibré déterminant au-dessus de la variété des reprsentations. Ce résultat nous permet d’établir une formule de recollement pour la torsion analytique fine sur les composantes connexes de l’espace des représentations complexes contenant un point unitaire. Finalement, nous donnons une nouvelle preuve de la formule de recollement de Brüning-Ma pour la torsion de Ray–Singer associée á une connexion non-hermitienne. Notre preuve est très diffrente de celle de Brüning et Ma et utilise une transformation de jauge temporelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The notion and properties of temporal gauge are recalled in the “Appendix”.

  2. There is no product structure assumption on g and \(h_j, j=0,1\).

References

  1. Baird, T., Ramras, D.: Smoothing maps into algebraic sets and spaces of flat connections. Geom. Dedicata 174, 359–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. With an appendix by Francois Laudenbach, pp 235. Asterisque no. 205 (1992)

  3. Bismut, J.-M., Goette, S.: Families torsion and Morse functions, pp 293. Asterisque No. 275 (2001)

  4. Braverman, M., Kappeler, T.: Ray-Singer type theorem for the refined analytic torsion. J. Funct. Anal. 243(1), 232–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braverman, M., Kappeler, T.: Refined analytic torsion as an element of the determinant line. Geom. Topol. 11, 139–213 (2007) (2008a:58031)

  6. Braverman, M., Kappeler, T.: Comparison of the refined analytic and the Burghelea-Haller torsions. Festival Yves Colin de Verdiere. Ann. Inst. Fourier (Grenoble). 57(7), 2361–2387 (2007)

  7. Braverman, M., Kappeler, T.: Refined analytic torsion. J. Differ. Geom. 78(2), 193–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braverman, M., Kappeler, T.: A canonical quadratic form on the determinant line of a flat vector bundle. Int. Math. Res. Not. IMRN. (11), 21 (2008)

  9. Braverman, M., Vertman, B.: A new proof of a Bismut–Zhang formula for some class of representations, geometric and spectral analysis. Contemp. Math. 630, Amer. Math. Soc., Providence, RI, 1–14 (2014)

  10. Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. An. 108, 88–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brüning, J., Ma, X.: An anomaly formula for Ray-Singer metrics on manifolds with boundary. Geom. Funct. Anal. 16(4), 767–837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brüning, J., Ma, X.: On the gluing formula for the analytic torsion. Math. Z. 273(3–4), 1085–1117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burghelea, D., Friedlander, L., Kappeler, T.: Meyer-Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107, 34–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burghelea, D., Haller, S.: Euler structures, the variety of representations and the Milnor–Turaev Torsion. Geom. Topol. 10, 1185–1238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burghelea, D., Haller, S.: Complex-valued Ray–Singer torsion. J. Funct. Anal. 248(1), 27–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burghelea, D., Haller, S.: Complex valued Ray–Singer torsion II. Math. Nachr. 283(10), 1372–1402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. 109(2), 259–322 (1979)

  18. Farber, M., Turaev, V.: Absolute torsion. Tel Aviv Topology Conference: Rothenberg Festschrift (1998), 73–85, Contemp. Math., 231, Amer. Math. Soc., Providence, RI (1999)

  19. Farber, M., Turaev, V.: Poincare–Reidemeister metric, Euler structures, and torsion. J. Reine Angew. Math. 520, 195–225 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Farber, M.: Absolute torsion and eta-invariant. Math. Z. 234(2), 339–349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farber, M., Turaev, V.: Poincaré-Reidemeister metric, Euler structures, and torsion. J. Reine Angew. Math. 520, 195–225 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Gilkey, P.: Invariance Theory, the Heat-Equation and the Atiyah–Singer Index Theorem, 2nd edn. CRC Press (1995)

  23. Goldman, W., Millson, J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. (67), 43–96 (1988)

  24. Gunning, R.C.: Lectures on Complex Analytic varieties: The Local Parametrization Theorem, Mathematical Notes, Princeton University Press, Princeton. University of Tokyo Press, Tokyo (1970)

    Google Scholar 

  25. Gunning, R. C.: Lectures on Complex Analytic Varieties: Finite Analytic Mappings. Princeton University Press, Princeton; University of Tokyo Press, Tokyo, Mathematical Notes, no. 14 (1974)

  26. Ho, N.-K.: The real locus of an involution map on the moduli space of flat connections on a Riemann surface. Int. Math. Res. Not. (61), 3263–3285 (2004)

  27. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn, North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam (1990)

  28. Kamber, F., Tondeur, Ph: Flat bundles and characteristic classes of group-representations. Am. J. Math. 89, 857–886 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Perturbation Theory for Linear Operators, Die Grundlehren der math. Wiss. Vol 132, Springer (1966)

  30. Lee, Y., Huang, R.-T.: The refined analytic torsion and a well-posed boundary condition for the odd signature operator. arXiv:1004.1753v1 [math.DG]

  31. Lee, Y., Huang, R.-T.: The gluing formula of the refined analytic torsion for an acyclic Hermitian connection. Manuscripta Math. 139(1–2), 91–122 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Lee, Y., Huang, R.-T.: The comparison of two constructions of the refined analytic torsion on compact manifolds with boundary. J. Geom. Phys. 76, 79–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lesch, M.: A gluing formula for the analytic torsion on singular spaces. Anal. PDE 6(1), 221–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lück, W.: Analytic and topological torsion for manifolds with boundary and symmetry. J. Differ. Geom. 37(2), 263–322 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Müller, W.: Analytic torsion and \(R\)-torsion of Riemannian manifolds. Adv. Math. 28(3), 233–305 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Müller, W.: Analytic torsion and \(R\)-torsion for unimodular representations. J. Am. Math. Soc. 6(3), 721–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Paquet, L.: Probl’emes mixtes pour le syst’eme de Maxwell. Annales Facult. des Sciences Toulouse, vol IV, 103–141 (1982)

  38. Ray, D.B., Singer, I.M.: \(R\)-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shabat, B. V.: Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992, Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel

  40. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  41. Turaev, V.G.: Reidemeister torsion in knot theory. Russian Math. Survey 41, 119–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Turaev, V.G.: Euler structures, nonsingular vector fields, and Reidemeister-type torsions. Math. USSR Izvestia 34, 627–662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Turaev, V. G.: Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, Notes taken by Felix Schlenk (2001)

  44. Vertman, B.: Refined analytic torsion on manifolds with boundary. Geom. Topol. 13(4), 1989–2027 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vertman, B.: Gluing formula for refined analytic torsion. arXiv:0808.0451v2 (2008)

  46. Vishik, S.M.: Generalized Ray–Singer conjecture. I. A manifold with a smooth boundary. Comm. Math. Phys. 167(1), 1–102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Braverman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braverman, M., Vertman, B. Refined analytic torsion as analytic function on the representation variety and applications. Ann. Math. Québec 41, 67–96 (2017). https://doi.org/10.1007/s40316-016-0062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-016-0062-x

Keywords

Mathematics Subject Classification

Navigation