Skip to main content

Vanishing and non-vanishing theta values


For a primitive Dirichlet character \(\chi \) of conductor \(N\) set

$$\begin{aligned} \Theta (\chi )=\sum _{n\in \mathbb Z } n^\epsilon \chi (n)\,e^{-\pi n^2/N} \end{aligned}$$

(where \(\epsilon =0\) for \(\chi \) even, \(\epsilon =1\) for \(\chi \) odd), the value of the associated theta series at its point of symmetry under the modular transformation \(\tau \rightarrow -1/\tau \). These numbers are related by \(\Theta (\chi )=W(\chi )\Theta (\bar{\chi })\) to the root number of the \(L\)-series of \(\chi \) and hence can be used to calculate the latter quickly if they do not vanish. We describe experiments showing that \(\Theta (\chi )\ne 0\) for all \(\chi \) with \(N\le 52{,}100\) (roughly 500 million primitive characters) except for precisely two characters (up to \(\chi \rightarrow \bar{\chi }\)), of conductors \(300\) and \(600\). The proof that \(\Theta (\chi )\) vanishes in these two cases uses properties of Ramanujan’s modular function of level \(5\). We also characterize all \(\chi \) for which \(W(\chi )\) is a root of unity and describe some experimental results concerning the algebraic numbers \(\Theta (\chi )/\eta (i)^{1+2\epsilon }\) when \(N\) is prime.


Pour tout caractère de Dirichlet \(\chi \) de conducteur \(N\) on pose

$$\begin{aligned} \Theta (\chi )=\sum _{n\in \mathbb Z } n^\epsilon \chi (n)\,e^{-\pi n^2/N} \end{aligned}$$

(où \(\epsilon =0\) pour \(\chi \) pair, \(\epsilon =1\) pour \(\chi \) impair), qui est la valeur de la série thêta correspondante à son point de symétrie par la transformation modulaire \(\tau \rightarrow -1/\tau \). Ces quantités sont reliées à la constante \(W(\chi )\) de l’équation fonctionelle de la fonction \(L\) associée à \(\chi \) par la formule \(\Theta (\chi )=W(\chi )\Theta (\bar{\chi })\), et donc peuvent être utilisées pour calculer rapidement cette constante si elles ne s’annulent pas. Nous montrons que \(\Theta (\chi )\ne 0\) pour tout \(\chi \) tel que \(N\le 52{,}100\) (approximativement 500 millions de caractères primitifs), à l’exception d’exactement deux caractères (à conjugaison complexe près) de conducteurs \(300\) et \(600\). La preuve de l’annulation de \(\Theta (\chi )\) dans ces deux cas utilise des propriétés de la fonction modulaire de Ramanujan de niveau \(5\). Nous donnons aussi une caractérisation de tous les \(\chi \) pour lesquels \(W(\chi )\) est une racine de l’unité et présentons des résultats expérimentaux sur les nombres algébriques \(\Theta (\chi )/\eta (i)^{1+2\epsilon }\) pour \(N\) premier.

This is a preview of subscription content, access via your institution.

Similar content being viewed by others


  1. One could, however, use L’Hôpital’s rule in this case to calculate \(W(\chi )\) quickly, or else choose \(\tau \!\ne \! i\) in (2).

  2. This trick is taken from [2].


  1. Evans, R.J.: Generalizations of a theorem of Chowla on Gaussian sums. Houst. J. Math. 3(3), 343–349 (1977)

    MATH  Google Scholar 

  2. Gritsenko, V., Skoruppa, N., Zagier, D.: Theta blocks (in preparation)

  3. Lemke Oliver, R.: Gauss sums over finite fields and roots of unity. Proc. Am. Math. Soc. 139(4), 1273–1276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Louboutin, S.: Sur le calcul numérique des constantes des équations fonctionnelles des fonctions \(L\) associées aux caractères impairs. C. R. Acad. Sci. Paris Sér. I Math. 329(5), 347–350 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Odoni, R.: On Gauss sums \({p^n}, n\ge 2\). Bull. Lond. Math. Soc 5, 325–327 (1973)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Henri Cohen.

Additional information

For Paulo Ribenboim, whose enthusiasm and good humor have lit up the world of Number Theory

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohen, H., Zagier, D. Vanishing and non-vanishing theta values. Ann. Math. Québec 37, 45–61 (2013).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification