Skip to main content
Log in

Homeomorphisms of Finite Metric Distortion Between Riemannian Manifolds

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

The theory of multidimensional quasiconformal mappings employs three main approaches: analytic, geometric (modulus) and metric ones. In this paper, we use the last approach and establish the relationship between homeomorphisms of finite metric distortion (FMD-homeomorphisms), finitely bi-Lipschitz, quasisymmetric and quasiconformal mappings on Riemannian manifolds. One of the main results shows that FMD-homeomorphisms are lower Q-homeomorphisms. As an application, there are obtained some sufficient conditions for boundary extensions of FMD-homeomorphisms. These conditions are illustrated by several examples of FMD-homeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data.

References

  1. Adamowicz, T.: Prime ends in metric spaces and quasiconformal-type mappings. Anal. Math. Phys. 9(4), 1941–1975 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afanas’eva, E.S.: Boundary behavior of ring \(Q\)-homeomorphisms on Riemannian manifolds. Ukrainian Math. J. 63(10), 1479–1493 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afanas’eva, E.S.: Boundary behavior of \(Q\)-homeomorphisms on Finsler spaces. (Russian) Ukr. Mat. Visn. 12 (2015), no. 3, 311–325; translation in J. Math. Sci. (N.Y.) 214 (2016), no. 2, 161–171

  4. Afanas’eva, E.: Boundary extension of mappings with integrally bounded moduli on Finsler manifolds. Complex Anal. Oper. Theory 13(6), 2839–2851 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Afanas’eva, E.S., Golberg, A.: Finitely bi-Lipschitz homeomorphisms between Finsler manifolds. Anal. Math. Phys. 10, 48 (2020). https://doi.org/10.1007/s13324-020-00391-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronszajn, N., Panitchpakdi, P.: Extensions of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, 405–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beurling, A., Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Second edition. Pure and Applied Mathematics, 120. Academic Press, Inc., Orlando, FL (1986)

  9. Brickell, F., Clark, R.S.: Differentiable Manifolds. Van Nostrand Reinhold, London (1970)

    MATH  Google Scholar 

  10. Espinola, R., Nicolae, A.: Continuous selections of Lipschitz extensions in metric spaces. Rev. Mat. Complut. 28(3), 741–759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer, New York (1969)

  12. Gehring, F.W.: Lipschitz mappings and the \(p\)-capacity of rings in \(n\)-space. Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), 175–193. Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J. (1971)

  13. Gehring, F.W., Martio, O.: Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math. 45, 181–206 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golberg, A., Salimov, R.: Mappings with upper integral bounds for \(p\)-moduli. Contemp. Math. 659, 91–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golberg, A., Salimov, R., Sevost’yanov, E.: Singularities of discrete open mappings with controlled \(p\)-module. J. Anal. Math. 127, 303–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutlyanskiĭ, V.Y., Golberg, A.: On Lipschitz continuity of quasiconformal mappings in space. J. Anal. Math. 109, 233–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001)

    Book  MATH  Google Scholar 

  18. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Il’yutko, D.P., Sevost’yanov, E. A.: On open discrete mappings with unbounded characteristic on Riemannian manifolds. (Russian) Mat. Sb. 207(4), 65–112 (2016); translation in Sb. Math. 207(3–4), 537–580 (2016)

  20. Jost, J.: Geometry and Physics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  21. Koskela, P., Wildrick, K.: Analytic properties of quasiconformal mappings between metric spaces. Metric and differential geometry, 163–174, Progr. Math., 297, Birkhäuser/Springer, Basel (2012)

  22. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics, 176. Springer, New York (1997)

  23. Martio, O., Ryazanov, V., Srebro, U., Yakubov, E.: Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. Springer, New York (2009)

    MATH  Google Scholar 

  24. Rado, T., Reichelderfer, P.V.: Continuous transformations in analysis. With an introduction to algebraic topology. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXV. Springer, Berlin (1955)

  25. Reshetnyak, Yu. G.: Space mappings with bounded distortion. Translated from the Russian by H. H. McFaden. Translations of Mathematical Monographs, 73. American Mathematical Society, Providence, RI (1989)

  26. Rosenberg, S.: The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student Texts, 31. Cambridge University Press, Cambridge (1997)

  27. Ryazanov, V.I., Salimov, R.R.: Weakly planar spaces and boundaries in the theory of mappings. (Russian) Ukr. Mat. Visn. 4(2), 199–234, 307 (2007); translation in Ukr. Math. Bull. 4(2), 199–234 (2007)

  28. Saks, S.: Theory of the Integral. Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach Dover Publications, Inc., New York (1964)

  29. Smolovaya, E.S.: Boundary behavior of ring Q-homeomorphisms in metric spaces. Ukrainian Math. J. 62(5), 785–793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Soultanis, E., Williams, M.: Distortion of quasiconformal maps in terms of the quasihyperbolic metric. J. Math. Anal. Appl. 402(2), 626–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stepanoff, W.: Sur les conditions de l’existence de la differentielle totale. Rec. Math. Soc. Math. Moscou 32, 511–526 (1925)

  32. Stone, A.H.: Paracompactness and product spaces. Bull. Am. Math. Soc. 54, 977–982 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sulanke, R., Wintgen, P.: Differentialgeometrie und Faserbündel (German) [Differential geometry and fiber bundles] Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, vol. 48. Birkhäuser Verlag, Basel-Stuttgart (1972)

    Google Scholar 

  34. Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer, Berlin (1971)

  35. Väisälä, J.: The free quasiworld. Freely quasiconformal and related maps in Banach spaces. Quasiconformal geometry and dynamics (Lublin, 1996), 55–118, Banach Center Publ., 48, Polish Acad. Sci. Inst. Math., Warsaw (1999)

  36. Väisälä, J., Vuorinen, M., Wallin, H.: Thick sets and quasisymmetric maps. Nagoya Math. J. 135, 121–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer, New York (1983)

Download references

Acknowledgements

The authors cordially thank Pekka Koskela for useful ideas and valuable remarks concerning our manuscript which essentially have improved its presentation. We also would like to thank the referee for carefully checking the manuscript and for making useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Golberg.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Pekka Koskela.

Dedicated to Pekka Koskela on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’eva, E., Golberg, A. Homeomorphisms of Finite Metric Distortion Between Riemannian Manifolds. Comput. Methods Funct. Theory 22, 755–780 (2022). https://doi.org/10.1007/s40315-021-00431-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-021-00431-3

Keywords

Mathematics Subject Classification

Navigation