Computational Methods and Function Theory

, Volume 18, Issue 4, pp 609–616 | Cite as

Characterizing Meromorphic Pseudo-lemniscates

  • Trevor RichardsEmail author


Let f be a meromorphic function with simply connected domain \(G\subset \mathbb {C}\), and let \(\Gamma \subset \mathbb {C}\) be a smooth Jordan curve. We call a component of \(f^{-1}(\Gamma )\) in G a \(\Gamma \)-pseudo-lemniscate of f. In this note, we give criteria for a smooth Jordan curve \(\mathcal {S}\) in G (with bounded face D) to be a \(\Gamma \)-pseudo-lemniscate of f in terms of the number of preimages (counted with multiplicity) which a given w has under f in D (denoted \(\mathcal {N}_f(w)\)), as w ranges over the Riemann sphere. As a corollary, we obtain the fact that if \(\mathcal {N}_f(w)\) takes three different value, then either \(\mathcal {S}\) contains a critical point of f, or \(f(\mathcal {S})\) is not a Jordan curve.


Meromorphic functions Lemniscates Finite Blaschke products 

Mathematics Subject Classification



  1. 1.
    Cartwright, M.L.: On the level curves of integral and meromorphic functions. Proc. Lond. Math. Soc. 2, 468–474 (1937)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ebenfelt, P., Khavinson, D., Shapiro, H.S.: Two-dimensional shapes and lemniscates. Contemp. Math. 553, 45–59 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Erdós, P., Herzog, F., Piranian, G.: Metric properties of polynomials. J. Anal. Math. 6, 125–148 (1958)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Goodman, A.W.: On the convexity of the level curves of a polynomial. Proc. Am. Math. Soc. 17, 358–361 (1966)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hayman, W.K., Wu, J.M.G.: Level sets of univalent functions. Comment. Math. Helv. 3, 366–403 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Heins, M.: Meromorphic functions on \({\mathbb{C}}\) whose moduli have a level set in common. Hokkaido Math. J. 10, 255–270 (1981)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Piranian, G.: The shape of level curves. Proc. Am. Math. Soc. 17, 1276–1279 (1966)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Richards, T.: Level curve configurations and conformal equivalence of meromorphic functions. Comput. Methods Funct. Theory 15(2), 323–371 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Richards, T.: Conformal equivalence of analytic functions on compact sets. Comput. Methods Funct. Theory 16(4), 585–608 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Richards, T., Younsi, M.: Conformal models and fingerprints of pseudo-lemniscates. Constr. Approx. 45(1), 129–141 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stephenson, K.: Analytic functions sharing level curves and tracts. Ann. Math. 2(123), 107–144 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stephenson, K., Sundberg, C.: Level curves of inner functions. Proc. Lond. Math. Soc. 3(51), 77–94 (1985)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Valiron, M.G.: Sur les courbes de module constant des fonctions entieres. C. R. Acad. Sci. Paris 204, 402–404 (1937)zbMATHGoogle Scholar
  14. 14.
    Younsi, M.: Shapes, fingerprints and rational lemniscates. Proc. Am. Math. Soc. 144, 1087–1093 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics and Computer Science DepartmentMonmouth CollegeMonmouthUSA

Personalised recommendations