Skip to main content
Log in

Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We present a numerical method for computing the logarithmic capacity of compact subsets of \(\mathbb {C}\), which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Alexander Goncharov & Burak Hatinoğlu

Notes

  1. More precisely, Szegő showed that d(E) is equal to the Robin constant \(\gamma \), which he defined via \(\lim _{z \rightarrow \infty } (\log |z| - g_{E^c}(z)) = \log \gamma \). In the modern literature the definition of the Robin constant usually gives \(c(E)=\exp (-\gamma )\).

  2. These computations, made in July 2005, were also reported in [25].

References

  1. Achieser, N.: Sur les polynomes de Tchebyscheff pour deux segments. C. R. Acad. Sci. Paris 191, 754–756 (1930)

    MATH  Google Scholar 

  2. Aoyama, N., Sakajo, T., Tanaka, H.: A computational theory for spiral point vortices in multiply connected domains with slit boundaries. Jpn. J. Ind. Appl. Math. 30(3), 485–509 (2013). doi:10.1007/s13160-013-0113-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogatyrev, A.B., Grigoriev, O.A.: Capacity of several aligned segments (2015). arXiv:1512.07154

  4. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers Inc., New York (1953)

    MATH  Google Scholar 

  5. Davis, P.: Numerical computation of the transfinite diameter of two collinear line segments. J. Res. Nat. Bur. Stand. 58, 155–156 (1957). doi:10.6028/jres.058.021

    Article  MathSciNet  MATH  Google Scholar 

  6. Dijkstra, W., Hochstenbach, M.E.: Numerical approximation of the logarithmic capacity. CASA report, vol. 0809 (2009)

  7. Driscoll, T.A.: Schwarz–Christoffel Toolbox User’s Guide. Version 2.3. http://www.math.udel.edu/~driscoll/SC/guide.pdf

  8. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002). doi:10.1017/CBO9780511546808

  9. Embree, M., Trefethen, L.N.: Green’s functions for multiply connected domains via conformal mapping. SIAM Rev. 41(4), 745–761 (1999). doi:10.1137/S0036144598349277

    Article  MathSciNet  MATH  Google Scholar 

  10. Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), 228–249 (1923). doi:10.1007/BF01504345

    Article  MathSciNet  MATH  Google Scholar 

  11. Greengard, L., Gimbutas, Z.: FMMLIB2D: A MATLAB toolbox for fast multipole method in two dimensions, Version 1.2 (2012). http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html

  12. Koch, T., Liesen, J.: The conformal “bratwurst” maps and associated Faber polynomials. Numer. Math. 86(1), 173–191 (2000). doi:10.1007/PL00005401

    Article  MathSciNet  MATH  Google Scholar 

  13. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58(2), 145–161 (1990). doi:10.1007/BF01385616

    Article  MathSciNet  MATH  Google Scholar 

  14. Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Modelling 15(3–5), 229–243 (1991). doi:10.1016/0895-7177(91)90068-I

  15. Krüger, H., Simon, B.: Cantor polynomials and some related classes of OPRL. J. Approx. Theory 191, 71–93 (2015). doi:10.1016/j.jat.2014.04.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Landkof, N.S.: Foundations of modern potential theory. Springer, New York. Translated from the Russian by A.P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180 (1972)

  17. Nasser, M.M.S.: Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31(3), 1695–1715 (2009). doi:10.1137/070711438

    Article  MathSciNet  MATH  Google Scholar 

  18. Nasser, M.M.S.: Fast solution of boundary integral equations with the generalized Neumann kernel. Electron. Trans. Numer. Anal. 44, 189–229 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Nasser, M.M.S., Al-Shihri, F.A.A.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013). doi:10.1137/120901933

    Article  MathSciNet  MATH  Google Scholar 

  20. Nasser, M.M.S., Green, C.C.: A fast numerical method for ideal fluid flow in domains with multiple stirrers (2016). arXiv: 1701.00115

  21. Nasser, M.M.S., Liesen, J., Sète, O.: Numerical computation of the conformal map onto lemniscatic domains. Comput. Methods Funct. Theory 16(4), 609–635 (2016). doi:10.1007/s40315-016-0159-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Nasser, M.M.S., Murid, A.H.M., Zamzamir, Z.: A boundary integral method for the Riemann–Hilbert problem in domains with corners. Complex Var. Elliptic Equ. 53(11), 989–1008 (2008). doi:10.1080/17476930802335080

    Article  MathSciNet  MATH  Google Scholar 

  23. Ransford, T.: Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995). doi:10.1017/CBO9780511623776

  24. Ransford, T.: Computation of logarithmic capacity. Comput. Methods Funct. Theory 10(2), 555–578 (2010). doi:10.1007/BF03321780

    Article  MathSciNet  MATH  Google Scholar 

  25. Ransford, T., Rostand, J.: Computation of capacity. Math. Comput. 76(259), 1499–1520 (2007). doi:10.1090/S0025-5718-07-01941-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Rathsfeld, A.: Iterative solution of linear systems arising from the Nyström method for the double-layer potential equation over curves with corners. Math. Methods Appl. Sci. 16(6), 443–455 (1993). doi:10.1002/mma.1670160604

    Article  MathSciNet  MATH  Google Scholar 

  27. Rostand, J.: Computing logarithmic capacity with linear programming. Exp. Math. 6(3), 221–238 (1997). doi:10.1080/10586458.1997.10504611. http://projecteuclid.org/euclid.em/1047920422

  28. Saff, E.B.: Logarithmic potential theory with applications to approximation theory. Surv. Approx. Theory 5, 165–200 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Schiefermayr, K.: Estimates for the asymptotic convergence factor of two intervals. J. Comput. Appl. Math. 236(1), 28–38 (2011). doi:10.1016/j.cam.2010.06.008

    Article  MathSciNet  MATH  Google Scholar 

  30. Sète, O., Liesen, J.: On conformal maps from multiply connected domains onto lemniscatic domains. Electron. Trans. Numer. Anal. 45, 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Sète, O., Liesen, J.: Properties and examples of Faber–Walsh polynomials. Comput. Methods Funct. Theory 17(1), 151–177 (2017). doi:10.1007/s40315-016-0176-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Szegö, G.: Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 21(1), 203–208 (1924). doi:10.1007/BF01187465

  33. Walsh, J.L.: On the conformal mapping of multiply connected regions. Trans. Am. Math. Soc. 82, 128–146 (1956). doi:10.2307/1992982

    Article  MathSciNet  MATH  Google Scholar 

  34. Whittaker, E.T., Watson, G.N.: A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, 4th edn. Reprinted. Cambridge University Press, New York (1962)

Download references

Acknowledgements

We thank Thomas Ransford for bringing to our attention the analytic formula for the capacity of two unequal disks (Example 4.7). We also thank Nick Trefethen for sharing the numerical results on the capacity of the Cantor middle third set he obtained together with Banjai and Embree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Liesen.

Additional information

Communicated by Darren Crowdy.

The second author was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 291068. The views expressed in this article are not those of the ERC or the European Commission, and the European Union is not liable for any use that may be made of the information contained here.

Appendix: Numerical computation of the preimage of a parallel slit domain

Appendix: Numerical computation of the preimage of a parallel slit domain

Let \(\varOmega \) be a given parallel slit domain, i.e., the entire z-plane with \(\ell \) slits \(L_j\), \(j=1,2,\ldots ,\ell \), along straight lines; see the top of Fig. 8. An efficient numerical method for computing the conformal map \(z=\omega (\zeta )\) from an unbounded domain G exterior to \(\ell \) smooth Jordan curves \(\varGamma _j\), \(j=1,2,\ldots ,\ell \), onto the parallel slit domain \(\varOmega \) such that \(\omega (\zeta ) = \zeta + O(1/\zeta )\) as \(\zeta \rightarrow \infty \) has been presented in [17, Sec. 4.5]. Assume that the boundary \(\varGamma \) of G is parametrized by the function \(\eta (t)\) as in (3.1). Assume also the operators \(\mathbf{N}\) and \(\mathbf{M}\) are the same operators as in (3.3). Then we have the following theorem from [17].

Theorem A.1

Let

$$\begin{aligned} \gamma (t)={\mathrm {Im}}[\eta (t)], \quad t\in J, \end{aligned}$$

let \(\mu \) be the unique solution of the boundary integral equation

$$\begin{aligned} (\mathbf{I}- \mathbf{N}) \mu = - \mathbf{M}\gamma , \end{aligned}$$
(A.1)

and let h be the piecewise constant function

$$\begin{aligned} h = ( \mathbf{M}\mu - (\mathbf{I}- \mathbf{N}) \gamma )/2. \end{aligned}$$

Then the function f with the boundary values

$$\begin{aligned} f(\eta (t))=\gamma (t)+h(t)+\mathrm {i}\mu (t) \end{aligned}$$

is analytic in G with \(f(\infty )=0\) and the conformal mapping \(\omega \) is given by

$$\begin{aligned} \omega (\zeta )=\zeta -\mathrm {i}f(\zeta ), \quad \zeta \in G\cup \varGamma . \end{aligned}$$
Fig. 8
figure 8

The given parallel slit domain \(\varOmega \) (top), the initial preimage domain \(G^0\) (dashed line, bottom), and the computed preimage domain G (solid line, bottom)

In Theorem A.1, the domain G is assumed to be known, and the integral equation (A.1) is used to the find the conformal map \(z=\omega (\zeta )\) from G onto the parallel slit domain \(\varOmega =\omega (G)\). In our application with the Cantor sets, however, the domain G is unknown and the parallel slit domain \(\varOmega \) is known. Hence a straightforward application of a numerical method based on Theorem A.1 is not possible.

We will now describe an iterative method developed in [20] for computing G and the conformal map from G onto the (known) parallel slit domain \(\varOmega \). The method is an improvement of a numerical method suggested by Aoyama et al. [2], where the preimage G is assumed to be circular. Since the image region \(\varOmega \) is elongated (parallel slit domain), crowding can cause serious problems. Further, the convergence of the iterative method is slow if G is assumed to be circular. To overcome such difficulties, it was assumed in [20] that the boundaries of the domain G are ellipses instead of circles.

Let \(|L_j|\) denote the length of the slit \(L_j\) and let \(z_j\) denote its center, \(j=1,2,\ldots ,\ell \). In the iteration step \(i=0,1,2,\ldots \) we assume that the domain \(G^i\) is a multiply connected domain bounded by the ellipses \(\varGamma ^i_j\), parametrized for \(j=1,2,\ldots ,\ell \) by

$$\begin{aligned} \eta ^i_j(t)=\zeta ^i_j+0.5\left( a^i_j\cos t-\mathrm {i}b^i_j\sin t\right) , \quad t\in J_j=[0,2\pi ]. \end{aligned}$$

Then the following iteration computes the centers of the ellipses \(\zeta ^i_j\), the lengths of the major axes \(a^i_j\), and the lengths of the minor axes \(b^i_j\) for \(j=1,2,\ldots ,\ell \).

Initialization Let \(\varepsilon >0\) be a given tolerance and let Max be a maximum number of iterations. (In our numerical experiments in this paper we always used \(\varepsilon =10^{-14}\) and \(\mathrm{Max}=50\).) Set

$$\begin{aligned} \zeta ^0_j=z_j, \quad a^0_j=(1-0.5r)|L_j|, \quad b^0_j=r a^0_j, \end{aligned}$$

where \(0<r<1\) is the ratio of the lengths of the major and minor axes of the ellipse; see Fig. 8 (dashed line, bottom) for \(r=0.5\).

For \(i=1,2,\ldots \):

  1. 1.

    Map \(G^{i-1}\) to a parallel slit domain \(\varOmega ^i\) (based on Theorem A.1), which is the entire \(z-\)plane with \(\ell \) slits \(L^i_j\), \(j=1,2,\ldots ,\ell \), along horizontal straight lines.

  2. 2.

    If \(|L^i_j|\) denotes the length of the slit \(L^i_j\) and \(z^i_j\) denotes its center, then we define the parameters of the preimage domain \(G^i\) as

    $$\begin{aligned} \zeta ^{i}_j&= \zeta ^{i-1}_j-(z^{i}_j-z_j), \\ a^{i}_j&= a^{i-1}_j-(|L^{i}_j| -|L_j|), \\ b^{i}_j&= r a^{i}_j. \end{aligned}$$
  3. 3.

    Stop the iteration if

    $$\begin{aligned} \mathop {{ max}}\limits _{1\le j\le m}(|z^{i}_j-z_j|+||L^{i}_j| -|L_j||)<\varepsilon \quad \mathrm{or} \quad i>{Max}. \end{aligned}$$

Several numerical examples in this paper as well as in [2, 20] show the convergence of this iterative method, but no proof of convergence has been given so far. Numerical experiments also show that the iterative method requires fewer iterations for small values of r, i.e., thin ellipses. For thin ellipses, however, we usually need a larger number of points n for discretizing the boundary integral equations and the GMRES method for solving these discretized equations requires more iterations to converge.

In the numerical experiments with the Cantor sets shown in this paper we have not chosen to optimize upon these parameters, but we used the fixed values \(r=0.5\) and \(n=64\). The number of iterations for the convergence to the accuracy \(\varepsilon =10^{-14}\) of the above iterative method applied in the computation of \(c(E_k)\) for \(k=1,2,\ldots ,12\) is shown in Fig. 9. The (unpreconditioned) GMRES method for solving the discretized integral equations required between 5 and 11 iterations.

Fig. 9
figure 9

Number of iterations for computing the preimage domains required in the computation of \(c(E_k)\) for \(k=1,2,\ldots ,12\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liesen, J., Sète, O. & Nasser, M.M.S. Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets. Comput. Methods Funct. Theory 17, 689–713 (2017). https://doi.org/10.1007/s40315-017-0207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-017-0207-1

Keywords

Mathematics Subject Classification

Navigation