Skip to main content
Log in

Sufficient Conditions for First-Order Differential Operators to be Associated with a q-Metamonogenic Operator in a Clifford Type Algebra

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Consider the initial value problem

$$\begin{aligned} \partial _{t}u= & {} {\mathcal L}(t,x,u,\partial _{x_{i}}u),\nonumber \\ u(0,x)= & {} \varphi (x), \end{aligned}$$
(0.1)

where t is the time, \({\mathcal L}\) is a linear first-order differential operator and \(\varphi \) is a generalized q-metamonogenic function. This problem can be solved by applying the method of associated spaces which is constructed by Tutschke (see Solution of initial value problems in classes of generalized analytic functions, Teubner Leipzig and Springer, New York, 1989). In this work, we formulate sufficient conditions on the coefficients of the operator \({\mathcal L}\) under which this operator is associated to the space of generalized q-metamonogenic functions satisfying a differential equation with anti-q-metamonogenic right-hand side, when q and \(\lambda \) are constant Clifford vectors. We also build a computational algorithm to check the computations in the cases \({\mathcal A}^{*}_{2,2}\) and \({\mathcal A}^{*}_{3,2}\). In conical domains, the initial value problem (0.1) is uniquely solvable for an operator \({\mathcal L}\) and for any generalized q-metamonogenic initial function \(\varphi \), provided an interior estimate holds for generalized q-metamonogenic functions satisfying a differential equation with anti-q-metamonogenic right-hand side. The solution is also a generalized q-metamonogenic function for each fixed t. This work generalizes the results given in Di Teodoro and Sapian (Adv. Appl. Clifford Algebras, 25:283–301, 2015) and Van (Differential operator in a Clifford analysis associated to differential equations with anti-monogenic right hand side, IC/2006/134, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balderrama, C., Di Teodoro, A., Infante, A.: Some integral representation for meta-monogenic function in clifford algebras depending on parameters. Adv. Appl. Clifford Algebras 23(4), 793–813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Begehr, H.: Iterations of Pompeiu operators. Gen Math 7, 3–23 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Begehr, H.: Boundary value problems in complex analysis I and II. Boletín de la Asociación Matemática Venezolana XII(1-2), 65–85, 217–250 (2005)

  4. Begehr, H., Jeffrey, A.: Partial differential equations with complex analysis (Research Notes in Mathematics Series). Chapman and Hall/CRC, UK (1992)

  5. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman Research Notes in Mathematics, vol. 76. London (1982)

  6. Di Teodoro, A.: Generalized monogenic functions satisfying differential equations with anti-monogenic right-hand sides on Clifford algebras depending on parameters. Complex Var. Elliptic Equations 58(12), 1715–1724 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Teodoro, A., Sapian, M.: Solution of the Initial Value Problem for a Linear Evolution Equation in a Clifford Type Algebra. Adv. Appl. Clifford Algebras 25(2), 283–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Teodoro, A., Vanegas, C.: Fundamental solutions for the first order metamonogenic operator. Adv. Appl. Clifford Algebras 22(1), 49–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic functions in the plane and n-dimensional Space. Birkhäuser, New York (2008)

  10. Gürlebeck, K., Sprößig, W.: Quaternionic analysis and elliptic boundary value problems. Akademie-Verlag, Berlin (1989) [Birkhäuser Verlag, Basel 1990]

  11. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers, 1st edn. Wiley, New York (1998)

  12. Kravchenko, V.: Applied quaternioc analysis. Research and Exposition in Mathematics, vol. 28. Heldermann Verlag, Lemgo (2003)

  13. Lewy, L.: An example of a smooth linear partial differential equations without solution. Ann. Math. 66, 155–158 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Obolashvili, E.: Partial differential equations in Clifford analysis. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 96. Longman, Harlow (1998)

  15. Obolashvili, E.: Higher order partial differential equations in Clifford analysis. Effective solutions to problems. Birkhäuser, Boston (2003)

  16. Van, N.T.: Differential operator in a clifford analysis associated to differential equations with anti-monogenic right hand side, IC/2006/134 (2016)

  17. Tutschke, W.: Associated spaces-a new tool of real and complex analysis, contained in function spaces in complex and clifford analysis. National University Publ, Hanoi (2008)

    MATH  Google Scholar 

  18. Tutschke, W.: Interior estimates in the theory of partial differential equations and their applications to initial value problems. Mem. Differ. Equations Math. Phys. 12, 204–209 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Tutschke, W.: Solution of initial value problems in classes of generalized analytic functions. Teubner Leipzig and Springer Verlag, New York (1989)

  20. Tutschke, W., Van, N.T.: Interior Estimates in the sup-norm for generalized monogenic functions satisfying a differential equation with anti-monogenic right-hand sides. Complex Var. Elliptic Equations 52(5), 367–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tutschke, W., Yüksel, U.: Generalized monogenic functions satisfying differenttial equations with anti-monogenic right-han sides, vol. 6, pp. 263–270. ISAAC series, Kluwer Academic Publishers, Dordrecht (1999)

  22. Tutschke, W., Yüksel, U.: Interior Lp-estimates for functions with integral representations. Appl. Anal 73, 281–294 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tutschke, W., Vanegas, C.J: Clifford algebras depending on parameters and their applications to partial differential equations. Contained in some topics on value distribution and differentiability in complex and p-adic analysis. Mathematics Monograph Series, vol. 11, pp. 430–450, Science Press, Beijing (2008)

  24. Tutschke, W., Vanegas, C.J.: Métodos del análisis complejo en dimensiones superiores. Ediciones IVIC, Caracas (2008)

  25. Vekua, I.N.: Generalized Analytic Functions, vol. 25. Pergamon (1962)

  26. Zhenyuan, Xu: A function theory for the operator \(D-\lambda \). Complex Var. Theory Appl. Int. J. 16(1), 27–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, Z., Zhang, W.: Boundary value problems for powers of the Dirac operator. Complex Var. Elliptic Equation 51, 581–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Professor Wolfgang Tutschke for his suggestions and comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eusebio Ariza García.

Additional information

Communicated by Stephan Ruscheweyh.

Appendices

Appendix 1

The code displayed below is to calculate the sufficient conditions for associated operators in the Clifford type Algebra \({\mathcal A}^{*}_{n,2}\) for \(n=1,2,3\). The idea is to represent a function \(u \in {\mathcal A}^{*}_{n,2}\) as a vector function \(\mathbf {u} \in {\mathbf {R}}^m\), where \(m=2^n-1\), with the same coordinates of u in the order prescribed in \(\Gamma \) (see Remark 3). It is easy to see that the operation \(e_i \cdot u\) for \(i = 1,2,\ldots ,n\) can be represented as the matrix-vector operation \(E_i\mathbf {u}\), where \(E_i \in M_{m\times m}({\mathbf {R}})\). More details can be found in [5] for classic Clifford algebras. Using this fact, the differential operators l and \({\mathcal L}\) are written in this new format and \(l ({\mathcal L}u)=0\) is computed directly using matrix algebra and the necessary conditions are found with the help of a Computer Algebra System.

Note that our algorithm:

  • Naturally covers the cases \({\mathcal A}^{*}_{1,2}\) and \({\mathcal A}^{*}_{2,2}\) allowing us to verify the manual calculation.

  • Works for any case \({\mathcal A}^{*}_{n,2}\) provided that the matrices \(E_i\) for \(i = 1,2,\ldots ,n\) are given. We are working on an algorithm to construct these matrices for all n.

figure a

Appendix 2

The coefficients \(a_{ij}\) of Theorem 2 are given by

$$\begin{aligned} {{ a}_{00}}= & {} {{ s}_0}+k_{0} \\ {{ a}_{01}}= & {} {\alpha } _{1}\,{{ s}_1}+k_{1}\\ {{ a}_{02}}= & {} {\alpha }_{2}\,{{ s}_2}-2 \,\gamma _{12}\,{{ s}_1}+k_{2}\\ {{ a}_{03}}= & {} -{\alpha }_{3}\, {{ s}_3}+2\,\gamma _{23}\,{{ s}_2}+2\,\gamma _{13}\,{{ s}_1}+k_{3} \\ {{ a}_{04}}= & {} k_{4}-{\alpha }_{1}\,{\alpha }_{2}\, {{ s}_4}\\\\ {{ a}_{05}}= & {} -{\alpha }_{1}\,{\alpha }_{3}\, {{ s}_5}+2\,{\alpha }_{1}\,\gamma _{23}\,{{ s}_4}+k_{5}\\ {{ a}_{06}}= & {} -{\alpha }_{2}\,{\alpha }_{3}\,{{ s}_6}+2\, {\alpha }_{3}\,\gamma _{12}\,{{ s}_5}-4\,\gamma _{12}\,\gamma _{23 }\,{{ s}_4}-2\,{\alpha }_{2}\,\gamma _{13}\,{{ s}_4}+k_{6} \\ {{ a}_{07}}= & {} k_{7}-{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}\,{{ s}_7} \\ {{ a}_{10}}= & {} {{ s}_1}-{{k_{1} }\over {{\alpha }_{1}}}\\ {{ a}_{11}}= & {} k_{0}-{{ s}_0}\\ {{ a}_{12}}= & {} -{\alpha }_{2}\,{{ s}_4}-{{k_{4}}\over { {\alpha }_{1}}}\\ {{ a}_{13}}= & {} {\alpha }_{3}\,{{ s}_5}-2\, \gamma _{23}\,{{ s}_4}-{{k_{5}}\over {{\alpha }_{1}}}\\ {{ a}_{14}}= & {} -{\alpha }_{2}\,{{ s}_2}+2\,\gamma _{12}\,{{ s}_1} +k_{2}\\ {{ a}_{15}}= & {} -{\alpha }_{3}\,{{ s}_3}+2\,\gamma _{23} \,{{ s}_2}+2\,\gamma _{13}\,{{ s}_1}+k_{3}\\ {{ a}_{16}}= & {} - {\alpha }_{2}\,{\alpha }_{3}\,{{ s}_7}-{{k_{7}}\over { {\alpha }_{1}}}\\ {{ a}_{17}}= & {} {\alpha }_{2}\,{\alpha } _{3}\,{{ s}_6}-2\,{\alpha }_{3}\,\gamma _{12}\,{{ s}_5}+4\, \gamma _{12}\,\gamma _{23}\,{{ s}_4}+2\,{\alpha }_{2}\,\gamma _{13 }\,{{ s}_4}+k_{6} \end{aligned}$$
$$\begin{aligned} {{ a}_{20}}= & {} {{ s}_2}-{{2\,k_{1}\,\gamma _{12} }\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}}\over { {\alpha }_{2}}}\\ {{ a}_{21}}= & {} {\alpha }_{1}\,{{ s}_4}+{{k _{4}}\over {{\alpha }_{2}}}\\ {{ a}_{22}}= & {} -2\,\gamma _{12}\, {{ s}_4}-{{ s}_0}-{{2\,k_{4}\,\gamma _{12}}\over {{\alpha }_{1} \,{\alpha }_{2}}}+k_{0}\\ {{ a}_{23}}= & {} {\alpha }_{3}\, {{ s}_6}+2\,\gamma _{13}\,{{ s}_4}-{{2\,k_{5}\,\gamma _{12}}\over { {\alpha }_{1}\,{\alpha }_{2}}}-{{k_{6}}\over {{\alpha }_{ 2}}}\\ {{ a}_{24}}= & {} {\alpha }_{1}\,{{ s}_1}-k_{1}\\ {{ a}_{25}}= & {} {\alpha }_{1}\,{\alpha }_{3}\,{{ s}_7}+{{k_{7} }\over {{\alpha }_{2}}}\\ {{ a}_{26}}= & {} -2\,{\alpha }_{3}\, \gamma _{12}\,{{ s}_7}-{\alpha }_{3}\,{{ s}_3}+2\,\gamma _{23}\, {{ s}_2}+2\,\gamma _{13}\,{{ s}_1}-{{2\,k_{7}\,\gamma _{12}}\over { {\alpha }_{1}\,{\alpha }_{2}}}+k_{3}\\ {{ a}_{27}}= & {} - {\alpha }_{1}\,{\alpha }_{3}\,{{ s}_5}+2\,{\alpha }_{1} \,\gamma _{23}\,{{ s}_4}-k_{5}\\ {{ a}_{30}}= & {} {{ s}_3}-{{4\,k_{1} \,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}-{{2\,k_{2}\,\gamma _{23}}\over {{\alpha }_{ 2}\,{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{13}}\over {{\alpha } _{1}\,{\alpha }_{3}}}-{{k_{3}}\over {{\alpha }_{3}}}\\ {{ a}_{31}}= & {} {\alpha }_{1}\,{{ s}_5}+{{2\,k_{4}\,\gamma _{23} }\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}}\over { {\alpha }_{3}}}\\ {{ a}_{32}}= & {} {\alpha }_{2}\,{{ s}_6}-2\, \gamma _{12}\,{{ s}_5}-{{4\,k_{4}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{4} \,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{k_{6} }\over {{\alpha }_{3}}}\\ {{ a}_{33}}= & {} 2\,\gamma _{23}\,{{ s}_6} +{{ s}_0}+{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha } _{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k_{5}\,\gamma _{12} \,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{6}\,\gamma _{23}}\over {{\alpha }_{2} \,{\alpha }_{3}}}+k_{0}\\ {{ a}_{34}}= & {} -{\alpha }_{1}\, {\alpha }_{2}\,{{ s}_7}-{{k_{7}}\over {{\alpha }_{3}}}\\ {{ a}_{35}}= & {} 2\,{\alpha }_{1}\,\gamma _{23}\,{{ s}_7}-2\, {\alpha }_{1}\,\gamma _{13}\,{{ s}_5}+{\alpha }_{1}\, {{ s}_1}+{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{ 2}\,{\alpha }_{3}}}+{{2\,k_{7}\,\gamma _{23}}\over {{\alpha } _{2}\,{\alpha }_{3}}}+{{2\,k_{5}\,\gamma _{13}}\over { {\alpha }_{3}}}-k_{1} \end{aligned}$$
$$\begin{aligned} {{ a}_{36}}\;= & {} \; - 4{} {\gamma _{12}}{} {\gamma _{23}}{} {{ s}_7} - 2{} {\alpha _2}{} {\gamma _{13}}{} {{ s}_7} + 4{} {\gamma _{12}}{} {\gamma _{13}}{} {{ s}_5} + {\alpha _2}{} {{ s}_2} - 2{} {\gamma _{12}}{} {{ s}_1}\mathrm{{ }} \\&-\, \frac{{8{} {k_4}{} {\gamma _{12}}{} {\gamma _{13}}{} {\gamma _{23}}}}{{{\alpha _1}{} {\alpha _2}{} {\alpha _3}}} - \frac{{4{} {k_7}{} {\gamma _{12}}{} {\gamma _{23}}}}{{{\alpha _1}{} {\alpha _2}{} {\alpha _3}}} - \frac{{4{} {k_5}{} {\gamma _{12}}{} {\gamma _{13}}}}{{{\alpha _1}{} {\alpha _3}}} - \frac{{2{} {k_7}{} {\gamma _{13}}}}{{{\alpha _1}{} {\alpha _3}}} - {k_2} \\ {{ a}_{37}}= & {} \;\;{\alpha _1}{} {\alpha _2}{} {{ s}_4} + {k_4} \\ {{ a}_{40}}= & {} {{ s}_4}-{{k_{4}}\over {{\alpha }_{1}\, {\alpha }_{2}}}\\ {{ a}_{41}}= & {} -{{ s}_2}-{{2\,k_{1}\,\gamma _{ 12}}\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}}\over { {\alpha }_{2}}}\\ {{ a}_{42}}= & {} {{ s}_1}+{{k_{1}}\over { {\alpha }_{1}}}\\ {{ a}_{43}}= & {} -{\alpha }_{3}\,{{ s}_7}-{{ k_{7}}\over {{\alpha }_{1}\,{\alpha }_{2}}}\\ {{ a}_{44}}= & {} 2 \,\gamma _{12}\,{{ s}_4}+{{ s}_0}-{{2\,k_{4}\,\gamma _{12}}\over { {\alpha }_{1}\,{\alpha }_{2}}}+k_{0}\\ \end{aligned}$$
$$\begin{aligned} {{ a}_{45}}= & {} {\alpha }_{3}\,{{ s}_6}+2\,\gamma _{13}\,{{ s}_4}-{{2\,k_{5}\, \gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{6} }\over {{\alpha }_{2}}}\\ {{ a}_{46}}= & {} -{\alpha }_{3}\, {{ s}_5}+2\,\gamma _{23}\,{{ s}_4}+{{k_{5}}\over {{\alpha }_{1} }}\\ {{ a}_{47}}= & {} 2\,{\alpha }_{3}\,\gamma _{12}\,{{ s}_7}+ {\alpha }_{3}\,{{ s}_3}-2\,\gamma _{23}\,{{ s}_2}-2\,\gamma _{13 }\,{{ s}_1}-{{2\,k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\, {\alpha }_{2}}}+k_{3}\\ {{ a}_{50}}= & {} {{ s}_5}-{{2\,k_{4}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{5}}\over {{\alpha }_{1}\,{\alpha }_{ 3}}}\\ {{ a}_{51}}= & {} -{{ s}_3}-{{4\,k_{1}\,\gamma _{12}\,\gamma _{23} }\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2 \,k_{2}\,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{ 2\,k_{1}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}- {{k_{3}}\over {{\alpha }_{3}}}\\ {{ a}_{52}}= & {} {{k_{7}}\over { {\alpha }_{1}\,{\alpha }_{3}}}-{\alpha }_{2}\,{{ s}_7} \\ {{ a}_{53}}= & {} -2\,\gamma _{23}\,{{ s}_7}+2\,\gamma _{13}\, {{ s}_5}-{{ s}_1}-{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{7} \,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{3}}}+{{k_{1}}\over {{\alpha }_{1}}} \end{aligned}$$
$$\begin{aligned} {{ a}_{54}}= & {} -{\alpha }_{2}\,{{ s}_6}+2\,\gamma _{12}\,{{ s}_5} -{{4\,k_{4}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{4}\,\gamma _{13} }\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{k_{6}}\over { {\alpha }_{3}}}\\ {{ a}_{55}}= & {} 2\,\gamma _{23}\,{{ s}_6}+ {{ s}_0}+{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{ 1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k_{5}\,\gamma _{12}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{6}\,\gamma _{23}}\over {{\alpha }_{2} \,{\alpha }_{3}}}+k_{0} \\ {{ a}_{56}}= & {} {\alpha }_{2}\, {{ s}_4}-{{k_{4}}\over {{\alpha }_{1}}} \\ {{ a}_{57}}= & {} 4\, \gamma _{12}\,\gamma _{23}\,{{ s}_7}+2\,{\alpha }_{2}\,\gamma _{13 }\,{{ s}_7}-4\,\gamma _{12}\,\gamma _{13}\,{{ s}_5}-{\alpha }_{2 }\,{{ s}_2}+2\,\gamma _{12}\,{{ s}_1} \\&-\, {{8\,k_{4}\,\gamma _{12}\, \gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2} \,{\alpha }_{3}}}-{{4\,k_{7}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k_{5} \,\gamma _{12}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3 }}}-{{2\,k_{7}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{ 3}}}-k_{2} \end{aligned}$$
$$\begin{aligned} {{ a}_{60}}= & {} {{ s}_6}+{{2\,k_{4}\,\gamma _{13}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{5} \,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{6}}\over {{\alpha }_{2}\,{\alpha }_{ 3}}}\\ {{ a}_{61}}= & {} {\alpha }_{1}\,{{ s}_7}-{{k_{7}}\over { {\alpha }_{2}\,{\alpha }_{3}}}\\ {{ a}_{62}}= & {} -2\,\gamma _{ 12}\,{{ s}_7}-{{ s}_3}-{{4\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{2} \,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{1 }\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{2\,k_{ 7}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{3}}\over {{\alpha }_{3}}}\\ {{ a}_{63}}= & {} 2\,\gamma _{13}\,{{ s}_7}-{{ s}_2}+{{2\,k_{7}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}+{{2\,k_{1}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2 }}}+{{k_{2}}\over {{\alpha }_{2}}}\\ {{ a}_{64}}= & {} {\alpha } _{1}\,{{ s}_5}-{{2\,k_{4}\,\gamma _{23}}\over {{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{5}}\over {{\alpha }_{3}}}\\ {{ a}_{65}}= & {} {{k_{4}}\over {{\alpha }_{2}}}-{\alpha }_{1}\, {{ s}_4}\\ {{ a}_{66}}= & {} 2\,\gamma _{23}\,{{ s}_6}{+}2\,\gamma _{12}\, {{ s}_4}{+}{{ s}_0}{+}{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k_{5} \,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}-{{2\,k_{6}\,\gamma _{23}}\over {{\alpha }_{ 2}\,{\alpha }_{3}}}-{{2\,k_{4}\,\gamma _{12}}\over {{\alpha } _{1}\,{\alpha }_{2}}}+k_{0}\\ {{ a}_{67}}= & {} 2\,{\alpha }_{1} \,\gamma _{23}\,{{ s}_7}-2\,{\alpha }_{1}\,\gamma _{13}\, {{ s}_5}+{\alpha }_{1}\,{{ s}_1}-{{4\,k_{4}\,\gamma _{13}\, \gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{7} \,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{5 }\,\gamma _{13}}\over {{\alpha }_{3}}}+k_{1} \end{aligned}$$
$$\begin{aligned} {{ a}_{70}}= & {} {{ s}_7}+{{k_{7}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}\\ {{ a}_{71}}= & {} -{{ s}_6}+{{2\,k_{4}\,\gamma _{ 13}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}- {{2\,k_{5}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{6}}\over {{\alpha }_{2}\,{\alpha }_{ 3}}}\\ {{ a}_{72}}= & {} {{ s}_5}+{{2\,k_{4}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5} }\over {{\alpha }_{1}\,{\alpha }_{3}}}\\ {{ a}_{73}}= & {} {{ s}_4}-{{k_{4}}\over {{\alpha }_{1}\,{\alpha }_{2}}}\\ {{ a}_{74}}= & {} 2\,\gamma _{12}\,{{ s}_7}+{{ s}_3}-{{4\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{2}\,\gamma _{23}}\over {{\alpha }_{2} \,{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{13}}\over {{\alpha }_{1 }\,{\alpha }_{3}}}+{{2\,k_{7}\,\gamma _{12}}\over {{\alpha }_{ 1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{3}}\over { {\alpha }_{3}}}\\ {{ a}_{75}}= & {} 2\,\gamma _{13}\,{{ s}_7}- {{ s}_2}+{{2\,k_{7}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{1}\,\gamma _{12} }\over {{\alpha }_{1}\,{\alpha }_{2}}}+{{k_{2}}\over { {\alpha }_{2}}}\\ {{ a}_{76}}= & {} 2\,\gamma _{23}\,{{ s}_7}-2\, \gamma _{13}\,{{ s}_5}+{{ s}_1}+{{4\,k_{4}\,\gamma _{13}\,\gamma _{23 }}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{ 2\,k_{7}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{5}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{3}}}-{{k_{1}}\over {{\alpha }_{1}}}\\ {{ a}_{77}}= & {} -2\,\gamma _{23}\,{{ s}_6}-2\,\gamma _{12}\,{{ s}_4}- {{ s}_0}{+}{{4\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{ 1}\,{\alpha }_{2}\,{\alpha }_{3}}}{-}{{4\,k_{5}\,\gamma _{12}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}{-}{{2\,k_{6}\,\gamma _{23}}\over {{\alpha }_{2} \,{\alpha }_{3}}}{-}{{2\,k_{4}\,\gamma _{12}}\over {{\alpha }_{1 }\,{\alpha }_{2}}}+k_{0} \end{aligned}$$

C is a matrix \(\mathbf {R}^{8\times 8}\) with entries given by

$$\begin{aligned} {{ C}_{00}}= & {} 0\\ {{ C}_{01}}= & {} {{4\,k_{1}\,\gamma _{12}\, \gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2} \,{\alpha }_{3}}}+{{2\,k_{2}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{1}\,\gamma _{13}^2 }\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{k_{3}\,\gamma _{13} }\over {{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{12}^2}\over { {\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}\,\gamma _{12}}\over { {\alpha }_{2}}}+k_{1}\\ {{ C}_{02}}= & {} {{4\,k_{1}\,\gamma _{12}\, \gamma _{23}^2}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{2}\,\gamma _{23}^2}\over {{\alpha }_{2 }\,{\alpha }_{3}}}+{{2\,k_{1}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{3}}}+{{k_{3}\,\gamma _{23}}\over { {\alpha }_{3}}}+{{k_{1}\,\gamma _{12}}\over {{\alpha }_{1}}}+k _{2}\\ {{ C}_{03}}= & {} -{{2\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}\,\gamma _{23}}\over { {\alpha }_{2}}}-{{k_{1}\,\gamma _{13}}\over {{\alpha }_{1}}} \\ {{ C}_{04}}= & {} {{2\,k_{4}\,\gamma _{23}^2}\over {{\alpha }_{2}\, {\alpha }_{3}}}+{{4\,k_{4}\,\gamma _{12}\,\gamma _{13}\,\gamma _{23 }}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{ 4\,k_{5}\,\gamma _{12}^2\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{6}\,\gamma _{12}\, \gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}\, \gamma _{23}}\over {{\alpha }_{3}}}\\&+\, {{2\,k_{4}\,\gamma _{13}^2 }\over {{\alpha }_{1}\,{\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12 }\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}-{{k_{6} \,\gamma _{13}}\over {{\alpha }_{3}}}\\ {{ C}_{05}}= & {} -{{k_{4}\, \gamma _{23}}\over {{\alpha }_{2}}}-{{2\,k_{4}\,\gamma _{12}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}}}+{{2\,k_{5} \,\gamma _{12}^2}\over {{\alpha }_{1}\,{\alpha }_{2}}}+{{k_{6} \,\gamma _{12}}\over {{\alpha }_{2}}}\\ {{ C}_{06}}= & {} {{k_{4}\, \gamma _{13}}\over {{\alpha }_{1}}}-{{k_{5}\,\gamma _{12}}\over { {\alpha }_{1}}}\\ {{ C}_{07}}= & {} k_{7} \\ {{ C}_{10}}= & {} -{{k_{1} }\over {{\alpha }_{1}}}\\ {{ C}_{11}}= & {} {{2\,k_{4}\,\gamma _{13}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{k_{5}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{3}}}+{{k_{4}\,\gamma _{12}}\over {{\alpha }_{1}\, {\alpha }_{2}}}\\ {{ C}_{12}}= & {} {{2\,k_{4}\,\gamma _{23}^2}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{3}}}-{{k_{4} }\over {{\alpha }_{1}}}\\ {{ C}_{13}}= & {} -{{k_{4}\,\gamma _{23} }\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{5}}\over { {\alpha }_{1}}}\\ {{ C}_{14}}= & {} -{{4\,k_{1}\,\gamma _{12}\,\gamma _{23}^2}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3 }}}{-}{{2\,k_{2}\,\gamma _{23}^2}\over {{\alpha }_{2}\,{\alpha } _{3}}}{-}{{2\,k_{1}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1} \,{\alpha }_{3}}}-{{2\,k_{7}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}{-}{{k_{3}\, \gamma _{23}}\over {{\alpha }_{3}}}\\&-{{k_{7}\,\gamma _{13}}\over { {\alpha }_{1}\,{\alpha }_{3}}}-{{k_{1}\,\gamma _{12}}\over { {\alpha }_{1}}}\\ \end{aligned}$$
$$\begin{aligned} {{ C}_{15}}= & {} {{2\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}}}+{{k_{2}\,\gamma _{ 23}}\over {{\alpha }_{2}}}+{{k_{1}\,\gamma _{13}}\over { {\alpha }_{1}}}+{{k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\, {\alpha }_{2}}}+k_{3}\\ {{ C}_{16}}= & {} -{{k_{7}}\over { {\alpha }_{1}}}\\ {{ C}_{17}}= & {} {{k_{4}\,\gamma _{13}}\over { {\alpha }_{1}}}-{{k_{5}\,\gamma _{12}}\over {{\alpha }_{1}}}\\ {{ C}_{20}}= & {} -{{2\,k_{1}\,\gamma _{12}}\over {{\alpha }_{1}\, {\alpha }_{2}}}-{{k_{2}}\over {{\alpha }_{2}}}\\ {{ C}_{21}}= & {} -{{2\,k_{4}\,\gamma _{13}^2}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{5}\,\gamma _{12}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{k_{6}\,\gamma _{13}}\over {{\alpha }_{2}\, {\alpha }_{3}}}+{{k_{4}}\over {{\alpha }_{2}}}\\ {{ C}_{22}}= & {} -{{2\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{5} \,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}+{{k_{6}\,\gamma _{23}}\over {{\alpha }_{2} \,{\alpha }_{3}}}-{{k_{4}\,\gamma _{12}}\over {{\alpha }_{1}\, {\alpha }_{2}}}\\ {{ C}_{23}}= & {} {{k_{4}\,\gamma _{13}}\over { {\alpha }_{1}\,{\alpha }_{2}}}-{{2\,k_{5}\,\gamma _{12} }\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{6}}\over { {\alpha }_{2}}}\\ {{ C}_{24}}= & {} {{4\,k_{1}\,\gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{2}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}-{{k_{7}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{1}\,\gamma _{13}^2 }\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{k_{3}\,\gamma _{13} }\over {{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{12}^2}\over { {\alpha }_{1}\,{\alpha }_{2}}}\\&\quad -{{k_{2}\,\gamma _{12}}\over { {\alpha }_{2}}} \end{aligned}$$
$$\begin{aligned} {{ C}_{25}}= & {} {{k_{7}}\over {{\alpha }_{2} }}\\ {{ C}_{26}}= & {} {{2\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}}}+{{k_{2}\,\gamma _{23}}\over { {\alpha }_{2}}}+{{k_{1}\,\gamma _{13}}\over {{\alpha }_{1}}}- {{k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}}}+k _{3}\\ {{ C}_{27}}= & {} {{k_{4}\,\gamma _{23}}\over {{\alpha }_{2}}}+ {{2\,k_{4}\,\gamma _{12}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{2}}}-{{2\,k_{5}\,\gamma _{12}^2}\over {{\alpha }_{1 }\,{\alpha }_{2}}}-{{k_{6}\,\gamma _{12}}\over {{\alpha }_{2} }} \\ {{ C}_{30}}= & {} 0\\ {{ C}_{31}}= & {} {{2\,k_{4}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{4}\,\gamma _{12}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12}^2}\over {{\alpha }_{1 }\,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{6}\,\gamma _{12} }\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}}\over { {\alpha }_{3}}}\\ {{ C}_{32}}= & {} -{{2\,k_{4}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}-{{2\,k_{4}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3 }}}+{{k_{5}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{3} }}+{{k_{6}}\over {{\alpha }_{3}}}\\ {{ C}_{33}}= & {} {{2\,k_{4}\, \gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2} \,{\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{6}\, \gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}\\ {{ C}_{34}}= & {} -{{k_{7}}\over {{\alpha }_{3}}}\\ {{ C}_{35}}= & {} {{k _{7}\,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{4\, k_{4}\,\gamma _{12}\,\gamma _{13}^2}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}+{{4\,k_{5}\,\gamma _{12}^2\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{6}\,\gamma _{12}\,\gamma _{13}}\over { {\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{12}^2 }\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}\,\gamma _{12} }\over {{\alpha }_{2}}}\\ {{ C}_{36}}= & {} {{4\,k_{1}\,\gamma _{12}\, \gamma _{23}^2}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{2}\,\gamma _{23}^2}\over {{\alpha }_{2 }\,{\alpha }_{3}}}-{{4\,k_{4}\,\gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}+{{2\,k_{1}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{3}}}-{{2\,k_{7}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}\\&+\,{{k_{3}\, \gamma _{23}}\over {{\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}-{{k_{7}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}+{{k_{1}\, \gamma _{12}}\over {{\alpha }_{1}}}\\ {{ C}_{37}}= & {} {{2\,k_{4}\,\gamma _{23}^2}\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{4\,k_{4 }\,\gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k_{5}\,\gamma _{12}^2\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{2\,k_{6}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}\,\gamma _{23}}\over { {\alpha }_{3}}}\\&+\, {{2\,k_{4}\,\gamma _{13}^2}\over {{\alpha }_{1 }\,{\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12}\,\gamma _{13}}\over { {\alpha }_{1}\,{\alpha }_{3}}}-{{k_{6}\,\gamma _{13}}\over { {\alpha }_{3}}} \end{aligned}$$
$$\begin{aligned} {{ C}_{40}}= & {} 0\\ {{ C}_{41}}= & {} {{k_{7}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}\\ {{ C}_{42}}= & {} {{k_{7}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}\\ {{ C}_{43}}= & {} -{{k_{7}}\over {{\alpha }_{1}\,{\alpha }_{2}}} \\ {{ C}_{44}}= & {} {{2\,k_{5}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{6}\, \gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}\\ {{ C}_{45}}= & {} {{k_{4}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{2}}}-{{2\,k_{5}\,\gamma _{12}}\over {{\alpha }_{1} \,{\alpha }_{2}}}-{{k_{6}}\over {{\alpha }_{2}}}\\ {{ C}_{46}}= & {} {{k_{4}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}}}+{{k_{5}}\over {{\alpha }_{1}}}\\ {{ C}_{47}}= & {} -{{2\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}\,\gamma _{23}}\over { {\alpha }_{2}}}-{{k_{1}\,\gamma _{13}}\over {{\alpha }_{1}}}- {{2\,k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}}} \\ {{ C}_{50}}= & {} 0\\ {{ C}_{51}}= & {} -{{4\,k_{1}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}-{{2\,k_{2}\,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3 }}}-{{2\,k_{1}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{ 3}}}-{{k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2} \,{\alpha }_{3}}}-{{k_{3}}\over {{\alpha }_{3}}}\\ {{ C}_{52}}= & {} {{k_{7}}\over {{\alpha }_{1}\,{\alpha }_{3}}} \\ {{ C}_{53}}= & {} -{{2\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{7}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{5}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{3}}}\\ {{ C}_{54}}= & {} -{{2\,k_{4}\,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}-{{2\,k_{4}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3 }}}+{{k_{5}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{3} }}+{{k_{6}}\over {{\alpha }_{3}}} \end{aligned}$$
$$\begin{aligned} {{ C}_{55}}= & {} {{4\,k_{1}\, \gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{4}\,\gamma _{13}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{2\,k_{2}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{5}\,\gamma _{12}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}-{{k_{6}\,\gamma _{23}}\over {{\alpha }_{2}\, {\alpha }_{3}}}\\&+\, {{2\,k_{1}\,\gamma _{13}^2}\over {{\alpha }_{1 }\,{\alpha }_{3}}}+{{2\,k_{7}\,\gamma _{12}\,\gamma _{13}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{3}\, \gamma _{13}}\over {{\alpha }_{3}}}+{{k_{4}\,\gamma _{12}}\over { {\alpha }_{1}\,{\alpha }_{2}}}\\ {{ C}_{56}}= & {} {{2\,k_{4}\, \gamma _{23}^2}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}+{{k_{5}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{3}}}-{{k_{4}}\over {{\alpha }_{1}}}\\ {{ C}_{57}}= & {} -{{4\,k_{1}\,\gamma _{12}\,\gamma _{23}^2}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{2} \,\gamma _{23}^2}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{4\,k _{4}\,\gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1} \,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{13}\, \gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{3}}}-{{4\,k_{7} \,\gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}\\&-\,{{k_{3}\,\gamma _{23}}\over {{\alpha }_{3} }}-{{2\,k_{5}\,\gamma _{12}\,\gamma _{13}}\over {{\alpha }_{1}\, {\alpha }_{3}}}-{{2\,k_{7}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{3}}}-{{k_{1}\,\gamma _{12}}\over {{\alpha }_{1}}} -k_{2}\end{aligned}$$
$$\begin{aligned} {{ C}_{60}}= & {} 0\\ {{ C}_{61}}= & {} -{{k_{7}}\over { {\alpha }_{2}\,{\alpha }_{3}}}\\ {{ C}_{62}}= & {} -{{4\,k_{1}\, \gamma _{12}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2} \,{\alpha }_{3}}}-{{2\,k_{2}\,\gamma _{23}}\over {{\alpha }_{2 }\,{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{13}}\over {{\alpha }_{ 1}\,{\alpha }_{3}}}+{{k_{7}\,\gamma _{12}}\over {{\alpha }_{1} \,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{3}}\over {{\alpha } _{3}}}\\ {{ C}_{63}}= & {} {{k_{7}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{2}\,{\alpha }_{3}}}\\ {{ C}_{64}}= & {} -{{2\,k_{4} \,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{4 }\,\gamma _{12}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{ 2}\,{\alpha }_{3}}}+{{2\,k_{5}\,\gamma _{12}^2}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{6}\, \gamma _{12}}\over {{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{5} }\over {{\alpha }_{3}}}\\ {{ C}_{65}}= & {} {{k_{7}\,\gamma _{13} }\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{4}}\over { {\alpha }_{2}}}\\ {{ C}_{66}}= & {} -{{k_{4}\,\gamma _{12}}\over { {\alpha }_{1}\,{\alpha }_{2}}}\\ {{ C}_{67}}= & {} {{4\,k_{1}\, \gamma _{12}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\, {\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{4}\,\gamma _{13}\, \gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{2} \,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{3 }}}-{{2\,k_{7}\,\gamma _{23}}\over {{\alpha }_{2}\,{\alpha }_{ 3}}}+{{2\,k_{1}\,\gamma _{13}^2}\over {{\alpha }_{1}\, {\alpha }_{3}}}-\,{{k_{5}\,\gamma _{13}}\over {{\alpha }_{3}}}\\&\, + {{k_{3}\,\gamma _{13}}\over {{\alpha }_{3}}}-{{2\,k_{1}\,\gamma _{ 12}^2}\over {{\alpha }_{1}\,{\alpha }_{2}}}-{{k_{2}\,\gamma _{ 12}}\over {{\alpha }_{2}}}+k_{1}\\ \end{aligned}$$
$$\begin{aligned}&{{ C}_{70}}={{k_{7}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}\\&{{ C}_{71}}=0\\&{{ C}_{72}}=0\\&{{ C}_{73}}=0\\&{{ C}_{74}}= {{2\,k_{7}\,\gamma _{12}}\over {{\alpha }_{1}\,{\alpha }_{2}\, {\alpha }_{3}}}\\&{{ C}_{75}}={{2\,k_{4}\,\gamma _{13}^2}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}-{{2\,k_{5} \,\gamma _{12}\,\gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}+{{k_{7}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{2}\,{\alpha }_{3}}}-{{k_{6}\,\gamma _{13}}\over { {\alpha }_{2}\,{\alpha }_{3}}}+{{2\,k_{1}\,\gamma _{12} }\over {{\alpha }_{1}\,{\alpha }_{2}}}+{{k_{2}}\over { {\alpha }_{2}}}\\&{{ C}_{76}}={{2\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3} }}+{{2\,k_{7}\,\gamma _{23}}\over {{\alpha }_{1}\,{\alpha }_{2 }\,{\alpha }_{3}}}+{{k_{5}\,\gamma _{13}}\over {{\alpha }_{1} \,{\alpha }_{3}}}-{{k_{1}}\over {{\alpha }_{1}}}\\&{{ C}_{77}}={{2\,k_{4}\,\gamma _{13}\,\gamma _{23}}\over { {\alpha }_{1}\,{\alpha }_{2}\,{\alpha }_{3}}}+{{k_{5}\, \gamma _{13}}\over {{\alpha }_{1}\,{\alpha }_{3}}}\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza García, E., Di Teodoro, A., Sapiain, M. et al. Sufficient Conditions for First-Order Differential Operators to be Associated with a q-Metamonogenic Operator in a Clifford Type Algebra. Comput. Methods Funct. Theory 17, 211–236 (2017). https://doi.org/10.1007/s40315-016-0182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-016-0182-y

Keywords

Mathematics Subject Classification

Navigation