Skip to main content
Log in

Abstract

The binomial polynomials are defined by the sum representation,

$$\begin{aligned} Q_{n}^{(r)} (z) = \sum _{k=0}^n \genfrac(){0.0pt}{}{n}{k}^{r+1} z^k, \qquad n\in \mathbb{N },\,z\in \mathbb{C }, \end{aligned}$$

where \(r\) is a non-negative integer. Using a multivariate complex integral representation, the asymptotical behavior of the sequence \((Q_{n}^{(r)})_{n=1}^{\infty }\) is studied on the whole complex plane as \(n\rightarrow \infty \). The proofs are essentially based on a multivariate version of the method of saddle points. Moreover, results on the asymptotic zero distribution for \((Q_{n}^{(r)})_{n=1}^{\infty }\) and for some related polynomials are established by means of the theory of logarithmic potentials with external fields. Classical results on sums of powers of binomial coefficients and for Legendre polynomials are generalized, as well as a specific weighted equilibrium problem on the unit interval is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowman, K., Shenton, L.: Sums of powers of binomial coefficients. Commun. Stat., Simul. Comput. 16(4), 1189–1207 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, G.: Generalized Bernstein-Bézier polynomials. J. Comput. Math. 1, 322–327 (1983)

    MATH  Google Scholar 

  3. Comtet, L.: Advanced combinatorics, Springer, Verlag (1974)

  4. De Bruijn, N.: Asymptotic methods in analysis. North-Holland, Amsterdam (1970)

    Google Scholar 

  5. Feller, W.: An introduction to probability theory and its applications, vol. 1, 3rd edn. Wiley, London (1968)

  6. Henrici, P.: Applied and computational complex analysis, vol. 2, Wiley, London (1977)

  7. Li, P., Gong, Y.: The order of approximation by the generalized Bernstein-Bézier polynomials. J. China Univ. Sci. Technol. 15, 15–18 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Liu, Z.: Approximation of continuous functions by the generalized Bernstein-Bézier polynomials. Approx. Theory Appl. 2, 105–130 (1986)

    MathSciNet  Google Scholar 

  9. McIntosh, R.: An asymptotic formula for binomial sums. J. Number Theory 58(1), 158–172 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Noble, R.: Asymptotics of a family of binomial sums. J. Number Theory 130(11), 2561–2585 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Noble, R.: Asymptotics of the weighted Delannoy numbers. Int. J. Number Theory 8(1), 175–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Olver, F.: Asymptotics and special functions, Academic Press, London (1974)

  13. Polya, G.; Szegö, G.: Aufgaben und Lehrsätze aus der Analysis I, 4th edn. Springer, Verlag (1971)

  14. Polya, G.; Szegö, G.: Aufgaben und Lehrsätze aus der Analysis II, 4th edn. Springer, Verlag (1971)

  15. Saff, E., Totik, V.: Logarithmic potentials with external fields, Springer, Verlag (1997)

  16. Szegö, G.: Orthogonal polynomials, 4th edn. American Mathematical Society, Providence (1975)

  17. Wong, R.: Asymptotic approximations of integrals, Academic Press, London (1989)

  18. Zeng, X., Piriou, A.: On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions. J. Approx. Theory 95, 369–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Gawronski.

Additional information

Communicated by Evguenii A. Rakhmanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, U., Gawronski, W. & Neuschel, T. Binomial Polynomials. Comput. Methods Funct. Theory 13, 163–180 (2013). https://doi.org/10.1007/s40315-013-0013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-013-0013-3

Keywords

Mathematics Subject Classification (2000)

Navigation