Skip to main content

Strong convergence in infinite time interval of tamed-adaptive Euler–Maruyama scheme for Lévy-driven SDEs with irregular coefficients

Abstract

A tamed-adaptive Euler–Maruyama approximation scheme is proposed for Lévy-driven stochastic differential equations with locally Lipschitz continuous, polynomial growth drift, and locally Hölder continuous, polynomial growth diffusion coefficients. The new scheme converges in both finite and infinite time intervals under some suitable conditions on the regularity and the growth of the coefficients.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Applebaum D (2009) Lévy processes and stochastic calculus, Cambridge studies in advanced mathematics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chen Z, Gan S (2020) Convergence and stability of the backward Euler method for jump-diffusion SDEs with super-linearly growing diffusion and jump coefficients. J Comput Appl Math 363:350–369

    Article  MathSciNet  Google Scholar 

  • Chen Z, Gan S, Wang X (2019) Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete Contin Dyn Syst Ser B 24(8):4513–4545

    MathSciNet  MATH  Google Scholar 

  • Cont R, Tankov P (2003) Financial modeling with jump processes. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Dareiotis K, Kumar C, Sabanis S (2016) On tamed Euler approximations of SDEs driven by Lévy noise with applications to delay equations. SIAM J Numer Anal 54(3):1840–1872

    Article  MathSciNet  Google Scholar 

  • Deng S, Fei W, Liu W, Mao X (2019) The truncated EM method for stochastic differential equations with Poisson jumps. J Comput Appl Math 355:232–257

    Article  MathSciNet  Google Scholar 

  • Fang W, Giles MB (2020) Adaptive Euler–Maruyama method for SDEs with non-globally Lipschitz drift. Ann Appl Probab 30(2):526–560

    Article  MathSciNet  Google Scholar 

  • Gou Z, Wang MH, Huang NJ (2020) Strong solutions for jump-type stochastic differential equations with non-Lipschitz coefficients. Stochastics 92(4):533–551

    Article  MathSciNet  Google Scholar 

  • Gyöngy I, Rásonyi M (2011) A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch Proc Appl 121:2189–2200

    Article  Google Scholar 

  • Hutzenthaler M, Jentzen A (2015) Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. American Mathematical Society, Providence

    Book  Google Scholar 

  • Hutzenthaler M, Jentzen A, Kloeden PE (2012) Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann Appl Probab 22(4):1611–1641

    Article  MathSciNet  Google Scholar 

  • Higham DJ, Kloeden PE (2005) Numerical methods for nonlinear stochastic differential equations with jumps. Numer Math 101(1):101–119

    Article  MathSciNet  Google Scholar 

  • Higham DJ, Kloeden PE (2006) Convergence and stability of implicit methods for jump-diffusion systems. Int J Numer Anal Model 3(2):125–140

    MathSciNet  MATH  Google Scholar 

  • Higham DJ, Kloeden PE (2007) Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J Comput Appl Math 205(2):949–956

    Article  MathSciNet  Google Scholar 

  • Hutzenthaler M, Jentzen A (2020) On a perturbation theory and strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann Probab 48(1):53–93

    Article  MathSciNet  Google Scholar 

  • Hutzenthaler M, Jentzen A, Kloeden PE (2011) Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc R Soc Lond Ser A Math Phys Eng Sci 467(2130):1563–1576

    MathSciNet  MATH  Google Scholar 

  • Jacod J (2004) The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann Probab 32(3):1830–1872

    Article  MathSciNet  Google Scholar 

  • Kieu TT, Luong DT, Ngo HL (2022) Tamed-adaptive Euler–Maruyama approximation for SDEs with locally Lipschitz continuous drift and locally Hölder continuous diffusion coefficients. Stoch Anal Appl 40(4):714–734

    Article  MathSciNet  Google Scholar 

  • Kumar C, Sabanis S (2017a) On tamed Milstein schemes of SDEs driven by Lévy noise. Discrete Contin Dyn Syst Ser B 22(2):421–463

  • Kumar C, Sabanis S (2017b) On explicit approximations for Lévy driven SDEs with super-linear diffusion coefficients. Electron J Probab 22(73):1–19

  • Li Z, Mytnik L (2011) Strong solutions for stochastic differential equations with jumps. Ann Inst Henri Poincaré PR 47(4):1055–1067

    MathSciNet  MATH  Google Scholar 

  • Li L, Taguchi D (2019a) On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case. BIT Numer Math 59(3):747–774

  • Li L, Taguchi D (2019b) On the Euler–Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients. Stat Probab Lett 146:15–26

  • Li M, Huang C, Chen Z (2021) Compensated projected Euler–Maruyama method for stochastic differential equations with superlinear jumps. Appl Math Comput 393:125760

    MathSciNet  MATH  Google Scholar 

  • Oksendal BK, Sulem A (2007) Applied stochastic control of jump diffusions, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Platen E, Bruti-Liberati N (2010) Numerical solution of stochastic differential equations with jumps in finance, vol 64. Springer, Berlin

    Book  Google Scholar 

  • Revuz D, Yor M (1999) Continuous martingales and Brownian motion, vol 293, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Sabanis S (2013) A note on tamed Euler approximations. Electron Commun Probab 18:1–10

    Article  MathSciNet  Google Scholar 

  • Xi F, Zhu C (2019) Jump type stochastic differential equations with non-Lipschitz coefficients: non-confluence, Feller and strong Feller properties, and exponential ergodicity. J Differ Equ 266(8):4668–4711

    Article  MathSciNet  Google Scholar 

  • Yamada T, Watanabe S (1971) On the uniqueness of solutions of stochastic differential equations. J Math Kyoto Univ 11:155–167

    MathSciNet  MATH  Google Scholar 

  • Yang X, Wang X (2017) A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models. Numer Algorithms 74(1):39–57

    Article  MathSciNet  Google Scholar 

  • Zhu J, Brzezniak Z, Liu W (2019) Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations. SIAM J Math Anal 51(3):2121–2167

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Kieu Trung Thuy was funded by Vingroup Joint Stock Company and supported by the Domestic Master/Ph.D. Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code VINIF.2021.TS.064 and VINIF.2020.TS.97. Ngo Hoang Long was supported by a research grant from the Hanoi National University of education, code SPHN21-06. Ngoc Khue Tran acknowledges support from the Vietnam Institute for Advanced Study in Mathematics (VIASM) where this work was done during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Long Ngo.

Additional information

Communicated by Pierre Etore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will prove the theorem Theorem 2.1. Without loss of generality, we assume that \(\gamma \) is a positive constant.

1.1 Existence of solution

For each \(N>0\), set

$$\begin{aligned} b_{N}(x)=\left\{ \begin{array}{ll} b(x), &{} \text{ if } |x| \le N, \\ b\left( \dfrac{N x}{|x|}\right) (N+1-|x|), &{} \text{ if } N<|x|<N+1, \\ 0, &{} \text{ if } |x| \ge N+1, \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} \sigma _{N}(x)=\left\{ \begin{array}{ll} \sigma (x), &{} \text{ if } |x| \le N, \\ \sigma \left( \dfrac{N x}{|x|}\right) (N+1-|x|), &{} \text{ if } N<|x|<N+1, \\ 0, &{} \text{ if } |x| \ge N+1, \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} c_{N}(x)=\left\{ \begin{array}{ll} c(x), &{} \text{ if } |x| \le N, \\ c\left( \dfrac{N x}{|x|}\right) (N+1-|x|), &{} \text{ if } N<|x|<N+1, \\ 0, &{} \text{ if } |x| \ge N+1. \end{array}\right. \end{aligned}$$

It is clearly that \(b_{N}\), \(c_{N}\) and \(\sigma _{N}\) satisfy Assumptions of Theorem 2.2 in Li and Mytnik (2011). Thus, the equation

$$\begin{aligned} X^N_t=x_{0}+\int _{0}^{t} b_{N}\left( X^N_s\right) \mathrm{d} s+\int _{0}^{t} \sigma _{N}\left( X^N_s\right) \mathrm{d} W_{s} + \int _0^t\int _{\mathbb {R}_0} c_N\left( X^N_{s-}\right) z{\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) \end{aligned}$$
(49)

has a unique strong solution \(X^N_t\). We will show that when \(N \rightarrow \infty , X^{N}_t\) converges in probability to a process \(X_t\) which satisfies Eq. (1).

For each \(N>0\), set

$$\begin{aligned} \tau _N=T \wedge \inf \left\{ t \in [0 ; T]:\left| X^N_t\right| \ge N\right\} . \end{aligned}$$

Due to the pathwise uniqueness of solution to Eq. (49), \(X^N_t=X^{M}_t\) almost surely for any \(t<\tau _N\) and \(N<M .\) Then, we will show that \(\tau _N=T\) almost surely for all N large enough.

It is straightforward to show that the coefficients \(b_{N}(x)\) , \(c_{N}(x)\) and \(\sigma _{N}(x)\) satisfy Condition C2’:

$$\begin{aligned}&p_0 xb(x) + \dfrac{p_0(p_0-1)}{2} \sigma ^2(x) +\dfrac{c^2(x)}{4L_0^2} \int _{\mathbb {R}_0} \left( (1+2L_0|z|)^{p_0}-1-2p_0L_0|z|\right) \nu (\mathrm{d}z) \\&\le 2\gamma |x|^2+2\eta , \end{aligned}$$

for any \(x \in \mathbb {R}\).

Secondly, for any \(p \in (1;2)\), using (55) to get

$$\begin{aligned} \mathbb {E}\left[ \sup _{0 \le t \le T}\left| X^N_t\right| ^{p}\right] \le C \quad \text{ for } \text{ any } N>0. \end{aligned}$$

Thus,

$$\begin{aligned} C \ge \mathbb {E}\left[ \sup _{0 \le t \le T}\left| X^N_t\right| ^{p}\right] \ge \mathbb {E}\left[ \sup _{0 \le t \le T}\left| X^N_t\right| ^{p} \mathbb {I}_{\left[ \tau _N<T\right] }\right] \ge N^{p} \mathbb {P}\left[ \tau _N<T\right] . \end{aligned}$$

It leads to \(\sum _{N=1}^{\infty } \mathbb {P}\left( \tau _N<T\right) <\infty \). Thanks to Borel–Cantelli’s lemma, we obtain

$$\begin{aligned} \mathbb {P}\left[ \limsup _{N}\left\{ \tau _N<T\right\} \right] =0. \end{aligned}$$

Since \(\left( \tau _N\right) _{N}\) is increasing, \(\tau _N=T\) for all N large enough. It means \(\lim _{N \rightarrow \infty } X^N_t=X_t\) exists almost surely and \(X_t=X^{M}_t\) almost surely for any \(t<\tau _N\) and \(M \ge N\). On the other hand, for any \(\kappa >0\), \(k>1\), \(2<q \le p_0\),

$$\begin{aligned} \mathbb {E}\left[ \left| X^{N+k}_{t \wedge \tau _{N+k}} - X^{N}_{t \wedge \tau _N} \right| ^{2}\right]&\le 2\mathbb {E}\left[ \left( \left| X^{N+k}_t \right| ^{2}+\left| X^N_t\right| ^{2}\right) \mathbb {I}_{\left\{ \tau _N<T\right\} }\right] \\&\le C_{q}\left( \kappa \mathbb {E}\left[ \left| X^{N+k}_t \right| ^{q}\right] +\kappa \mathbb {E}\left[ \left| X^N_t\right| ^{q}\right] +\frac{\mathbb {P}\left[ \tau _N<T\right] }{\kappa ^{2/(q-2)}}\right) . \end{aligned}$$

First, let \(N \rightarrow \infty \) and then let \(\kappa \rightarrow 0\), we get

$$\begin{aligned} \mathbb {E}\left[ \left| X^{N+M}_{t \wedge \tau _{N+M}} -X^{N}_{t \wedge \tau _N} \right| ^{2}\right] \rightarrow 0 \quad \text{ as } N \rightarrow \infty . \end{aligned}$$
(50)

It means that \((X^N_{t \wedge \tau _N})_{N\ge 1}\) is a Cauchy sequence in \(L^2\) space. This implies

$$\begin{aligned} X^{N}_{t \wedge \tau _N} {\mathop {\longrightarrow }\limits ^{L^{2}}} X_t \quad \text{ as } N \rightarrow \infty . \end{aligned}$$

Furthermore, for any \(p \in (0;p_0]\), since coefficients \(b_N,c_N\) and \(\sigma _N\) satisfy Condition C2’, there exists a constant \(C_{p}>0\) such that

$$\begin{aligned} \sup _{0 \le t \le T} \mathbb {E}\left[ |X^N_t|^{p}\right] \le C_{p}. \end{aligned}$$

Thanks to Fatou’s lemma, there exists a constant \(C_{p}>0\) such that

$$\begin{aligned} \sup _{0 \le t \le T} \mathbb {E}\left[ |X_t|^{p}\right] \le C_{p}. \end{aligned}$$

From the definition of \(b_{N}(x)\), we have

$$\begin{aligned} \mathbb {E}\left[ \left| \int _{0}^{t \wedge \tau _N}\left[ b_{N}\left( X^N_s\right) -b( X_s)\right] \mathrm{d} s\right| ^{2}\right] =0. \end{aligned}$$

Moreover, using the fact that \(|b(x)| \le C\left( 1+|x|^{\ell }\right) \) for all \(x \in \mathbb {R}\) and \(p_0 \ge 4l\),

$$\begin{aligned} \mathbb {E}\left[ \left| \int _{t \wedge \tau _N}^{t} b(X_s) d s\right| ^{2}\right]&\le C \int _{0}^{t} \mathbb {E}\left[ \left( 1+|X_s|^{2 \ell }\right) \mathbb {I}_{\left\{ \tau _N \le s\right\} }\right] \mathrm{d} s \\&\le \kappa C \int _{0}^{T} \mathbb {E}\left[ 1+|X_s|^{2 \ell }\right] ^{2} \mathrm{d} s+\frac{C \mathbb {P}\left[ \tau _N<T\right] }{\kappa } \\&\le \kappa C+\frac{C \mathbb {P}\left[ \tau _N<T\right] }{\kappa } . \end{aligned}$$

Let \(N \rightarrow \infty \) and \(\kappa \rightarrow 0\), we have

$$\begin{aligned} \int _{0}^{t \wedge \tau _N} b_{N}\left( X^N_s\right) \mathrm{d} s {\mathop {\longrightarrow }\limits ^{L^{2}}} \int _{0}^{t} b(X_s) \mathrm{d} s \quad \text{ as } N \rightarrow \infty . \end{aligned}$$
(51)

In the same manner, we can see that

$$\begin{aligned} \int _{0}^{t \wedge \tau _N} \sigma _{N}\left( X^N_s\right) \mathrm{d} W_{s} {\mathop {\longrightarrow }\limits ^{L^{2}}} \int _{0}^{t} \sigma (X_s) \mathrm{d} W_{s} \quad \text{ as } N \rightarrow \infty , \end{aligned}$$
(52)

and, by \(\int _{\mathbb {R}_{0}} z^{2} \nu (\mathrm{d}z)<\infty \),

$$\begin{aligned} \int _0^{t \wedge \tau _N} \int _{\mathbb {R}_0} c_N\left( X^N_{s-}\right) z{\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) {\mathop {\longrightarrow }\limits ^{L^{2}}} \int _0^t\int _{\mathbb {R}_0} c\left( X_{s-}\right) z{\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) \quad \text{ as } N \rightarrow \infty . \end{aligned}$$
(53)

By combining (49), (50), (51), (52) and (53), we get

$$\begin{aligned} X_{t}=x_{0}+\int _{0}^{t} b(X_s) \mathrm{d} s+\int _{0}^{t} \sigma (X_s) \mathrm{d} W_{s}+\int _0^t\int _{\mathbb {R}_0} c\left( X_{s-}\right) z{\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) \end{aligned}$$

almost surely for all \(t \in [0, T] .\) This shows that \(\left( X_{t}\right) _{t \in [0, T]}\) is a solution of Eq. (1). The proof is complete.

1.2 Pathwise uniqueness

Suppose that Eq. (1) has a solution \((X_t)_{0 \le t \le T}\), and \((X'_{t})_{0 \le t \le T}\) is another solution of Eq. (1). It follows from the proof of Proposition 2.3 that the sample paths of \((X_t)_{0\le t \le T}\) and \((X'_t)_{0\le t \le T}\) do not explode. We are going to show that \(\mathbb {E}\left[ |X_{t}-X'_{t}|\right] =0\) for all \(t \in [0, T]\), which implies the uniqueness of solution. For each \(N>0\), let \(\tau _N= T \wedge \inf \left\{ t \ge 0:\left| X_{t}\right| \vee \left| X_{t}^{\prime }\right| \ge N\right\} \).

Firstly, applying Itô’s formula for \(X^2_t\) and Condition C2 with \(p_0=2\), we have

$$\begin{aligned} X_{t}^{2}&=x_{0}^{2}+\int _{0}^{t}\left( 2 X_{s} b\left( X_{s}\right) +\sigma ^{2}\left( X_{s}\right) \right) \mathrm{d} s+\int _{0}^{t} 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s} \\&\quad +\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( \left( X_{s}+c\left( X_{s}\right) z\right) ^{2}-X_{s}^{2}-2 X_{s} c\left( X_{s}\right) z\right) \nu (\mathrm{d} z) \mathrm{d} s \\&\quad +\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( \left( X_{s-}+c\left( X_{s-}\right) z\right) ^{2}-X_{s-}^{2}\right) {\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) \\&=x_{0}^{2}+\int _{0}^{t}\left( 2 X_{s} b\left( X_{s}\right) +\sigma ^{2}\left( X_{s}\right) \right) \mathrm{d} s+\int _{0}^{t} 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s} \\&\quad +\int _{0}^{t} \int _{\mathbb {R}_0} c^{2}\left( X_{s}\right) z^{2} \nu \left( \mathrm{d}z\right) \mathrm{d} s+\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( 2 X_{s-} c\left( X_{s-}\right) z+c^{2}\left( X_{s-}\right) z^{2}\right) {\widetilde{N}}\left( \mathrm{d} s, \mathrm{d} z\right) \\&=x_{0}^{2}+\int _{0}^{t}\left( 2 X_{s} b\left( X_{s}\right) +\sigma ^{2}\left( X_{s}\right) +c^{2}\left( X_{s}\right) \int _{\mathbb {R}_{0}} z^{2} \nu (\mathrm{d} z)\right) \mathrm{d} s \\&\quad +\int _{0}^{t} 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s}+\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( 2 X_{s-} c\left( X_{s-}\right) {z}+c^{2}\left( X_{s-}\right) z^{2}\right) {\widetilde{N}}(\mathrm{d} s, \mathrm{d} z) \\&\le x_{0}^{2}+2\int _{0}^t \left( \gamma \left| X_{s}\right| ^{2}+\eta \right) \mathrm{d} s +\int _{0}^t 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s} \\&\quad +\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( 2 X_{s-} c\left( X_{s-}\right) z+c^{2}\left( X_{s-}\right) z^{2}\right) {\widetilde{N}}(\mathrm{d} s, \mathrm{d} z), \end{aligned}$$

which implies

$$\begin{aligned} X_{t \wedge \tau _N}^{2}&\le x_{0}^{2}+2\int _{0}^{t \wedge \tau _N} \left( \gamma \left| X_{s}\right| ^{2}+\eta \right) \mathrm{d} s +\int _{0}^{t \wedge \tau _N} 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s} \\&\quad +\int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left( 2 X_{s-} c\left( X_{s-}\right) z+c^{2}\left( X_{s-}\right) z^{2}\right) {\widetilde{N}}(\mathrm{d} s, \mathrm{d} z). \end{aligned}$$

For any stopping time \(\tau \le T\), we get

$$\begin{aligned} {X_{\tau \wedge \tau _N}^2}&\le x_{0}^{2}+2\int _{0}^{ {\tau \wedge \tau _N}} \left( \gamma \left| X_{s}\right| ^{2}+\eta \right) \mathrm{d} s +\int _{0}^{{\tau \wedge \tau _N}} 2 X_{s} \sigma \left( X_{s}\right) \mathrm{d} W_{s} \nonumber \\&\quad +\int _{0}^{{\tau \wedge \tau _N}} \int _{\mathbb {R}_{0}}\left( 2 X_{s-} c\left( X_{s-}\right) z+c^{2}\left( X_{s-}\right) z^{2}\right) {\widetilde{N}}(\mathrm{d} s, \mathrm{d} z). \end{aligned}$$
(54)

Taking expectation on both sides (54) and using Proposition 2.3 to obtain

$$\begin{aligned} \mathbb {E}\left[ {X_{\tau \wedge \tau _N}^2}\right]&\le x_{0}^{2}+2\mathbb {E}\left[ \int _{0}^{ {\tau \wedge \tau _N}} \left( \gamma \left| X_{s}\right| ^{2}+\eta \right) \mathrm{d} s \right] \\&\le x_{0}^{2}+2\int _{0}^{T} \left( \gamma \mathbb {E}\left[ \left| X_{s}\right| ^{2}\right] +\eta \right) \mathrm{d} s \\&\le C(x_0,\gamma ,\eta ,T). \end{aligned}$$

For any \(p \in (0;2)\), thanks to Proposition IV.4.7 in Revuz and Yor (1999), we have

$$\begin{aligned} \mathbb {E}\left[ \sup _{0 \le t \le T} \left| {X_{t \wedge \tau _N}}\right| ^{p} \right] \le C(x_0,\gamma ,\eta ,p,T). \end{aligned}$$

Let \(N \rightarrow \infty \) and apply Fatou’s lemma, we get

$$\begin{aligned} \mathbb {E}\left[ \sup _{0 \le t \le T} \left| X_t \right| ^{p} \right] \le C(x_0,\gamma ,\eta ,p,T). \end{aligned}$$
(55)

Similarly, since \((X'_{t})_{0 \le t \le T}\) is another solution of Eq. (1), as in (55), for any \(p\in (0;2)\), we have

$$\begin{aligned} \mathbb {E}\left[ \sup _{0 \le t \le T}\left| X'_{t} \right| ^{p}\right] \le C\left( x_{0}, \gamma , \eta , p, T \right) . \end{aligned}$$
(56)

Since \(X_t\) and \(X'_t\) are solutions of (1), we write

$$\begin{aligned} X_{t}-X'_{t}&=\int _{0}^{t}\left[ b\left( X_{s}\right) -b\left( X'_{s} \right) \right] \mathrm{d} s+\int _{0}^{t}\left[ \sigma \left( X_{s}\right) -\sigma \left( X'_{s} \right) \right] \mathrm{d} W_{s} \\&\quad +\int _{0}^{t} \int _{\mathbb {R}_{0}}\left( c\left( X_{s-}\right) -c\left( X'_{s-} \right) \right) z {\widetilde{N}}\left( \mathrm{d}s, \mathrm{d} z\right) . \end{aligned}$$

Applying Itô’s formula for \(\phi _{\delta \varepsilon }\left( X_{t}-X'_{t} \right) \) and using the mean value theorem, YW2 and YW5, we get

$$\begin{aligned}&\left| X_{t \wedge \tau _N}-X'_{t \wedge \tau _N} \right| \\&\quad \le \ \varepsilon +\phi _{\delta \varepsilon }\left( X_{t \wedge \tau _N}-X'_{t \wedge \tau _N} \right) \\&\quad = \varepsilon +\int _{0}^{t \wedge \tau _N} \phi '_{\delta \varepsilon } \left( X_{s}-X'_{s} \right) \left( b\left( X_{s}\right) -b\left( X'_{s} \right) \right) \mathrm{d} s \\&\qquad + \int _{0}^{t \wedge \tau _N} \frac{1}{2} \phi ''_{\delta \varepsilon } \left( X_{s}-X'_{s}\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s}\right) \right) ^{2} \mathrm{d} s\\&\qquad +\int _{0}^{t \wedge \tau _N} \phi '_{\delta \varepsilon } \left( X_{s}-X'_{s}\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s} \right) \right) \mathrm{d} W_{s} \\&\qquad + \int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left[ \phi _{\delta \varepsilon }\left( X_{s}-X'_{s}+\left( c\left( X_{s}\right) -c\left( X'_{s}\right) \right) z\right) \right. \\&\left. \qquad -\phi _{\delta \varepsilon }\left( X_{s}-X'_{s} \right) -\phi '_{\delta \varepsilon }\left( X_{s}-X'_{s} \right) \left( c\left( X_{s}\right) -c\left( X'_{s}\right) z \right) \right] \nu (\mathrm{d}z) \mathrm{d} s \\&\qquad + \int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left[ \phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-}+\left( c\left( X_{s-}\right) -c\left( X'_{s-}\right) \right) z\right) -\phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-} \right) \right] {\widetilde{N}}\left( \mathrm{d} s, \mathrm{d}z\right) \\&\quad \le \varepsilon +\int _{0}^{t \wedge \tau _N} \left| b\left( X_{s}\right) -b\left( X'_{s} \right) \right| \mathrm{d} s \\&\qquad + \int _{0}^{t \wedge \tau _N} \frac{1}{\left| X_{s}-X'_{s}\right| \log \delta } \mathbb {I}_{\left[ \frac{\varepsilon }{\delta }, \varepsilon \right] }\left( | X_{s}-X'_{s} |\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s}\right) \right) ^{2} \mathrm{d} s \\&\qquad + \int _{0}^{t \wedge \tau _N} \phi '_{\delta \varepsilon } \left( X_{s}-X'_{s}\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s} \right) \right) \mathrm{d} W_{s} +\int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}} 2\left| c\left( X_{s}\right) -c\left( X'_{s}\right) \right| |z| \nu \left( \mathrm{d}z\right) \mathrm{d} s \\&\qquad + \int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left[ \phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-}+\left( c\left( X_{s-}\right) -c\left( X'_{s-}\right) \right) z\right) -\phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-} \right) \right] {\widetilde{N}}\left( \mathrm{d} s, \mathrm{d}z\right) . \end{aligned}$$

Then, using Conditions C3, C4, C5, we get

$$\begin{aligned}&\left| X_{t \wedge \tau _N}-X'_{t \wedge \tau _N} \right| \nonumber \\&\quad \le \varepsilon +\int _{0}^{t \wedge \tau _N} L_N\left| X_{s}-X'_{s}\right| \mathrm{d} s+\int _{0}^{t \wedge \tau _N} \frac{\varepsilon ^{2 \alpha } L_N^{2}}{\log \delta } \mathrm{d} s \nonumber \\&\qquad +\int _{0}^{t \wedge \tau _N} \phi '_{\delta \varepsilon } \left( X_{s}-X'_{s}\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s} \right) \right) \mathrm{d} W_{s}+\int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}} 2 L_N\left| X_{s}- X'_s\right| |z| \nu (\mathrm{d} z) \mathrm{d} s \nonumber \\&\qquad + \int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left[ \phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-}+\left( c\left( X_{s-}\right) -c\left( X'_{s-}\right) \right) z\right) -\phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-} \right) \right] {\widetilde{N}}\left( \mathrm{d} s, \mathrm{d}z\right) \nonumber \\&\quad \le \varepsilon +\int _{0}^{t \wedge \tau _N} L_N\left( 1+2\mu \right) \left| X_{s}-X'_{s}\right| \mathrm{d} s+\int _{0}^{t \wedge \tau _N} \frac{\varepsilon ^{2 \alpha } L_N^{2}}{\log \delta } \mathrm{d} s \nonumber \\&\qquad +\int _{0}^{t \wedge \tau _N} \phi '_{\delta \varepsilon } \left( X_{s}-X'_{s}\right) \left( \sigma \left( X_{s}\right) -\sigma \left( X'_{s} \right) \right) \mathrm{d} W_{s} \nonumber \\&\qquad + \int _{0}^{t \wedge \tau _N} \int _{\mathbb {R}_{0}}\left[ \phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-}+\left( c\left( X_{s-}\right) -c\left( X'_{s-}\right) \right) z\right) -\phi _{\delta \varepsilon }\left( X_{s-}-X'_{s-} \right) \right] {\widetilde{N}}\left( \mathrm{d} s, \mathrm{d}z\right) . \end{aligned}$$
(57)

By taking expectation on both sides (57) and using Proposition 2.3, we obtain

$$\begin{aligned} \mathbb {E}\left[ |X_{t \wedge \tau _N} -X'_{t \wedge \tau _N}\right]&\le \varepsilon +L_N\left( 1+2 \mu \right) \int _{0}^{t} \mathbb {E}\left[ \left| X_{s \wedge \tau _N}-X'_{s \wedge \tau _N}\right| \right] \mathrm{d} s +\frac{\varepsilon ^{2 \alpha } L_N^{2}T}{\log \delta }. \end{aligned}$$

By choosing \(\delta =2\) and letting \(\varepsilon \rightarrow 0\), we get

$$\begin{aligned} \mathbb {E}\left[ \left| X_{t \wedge \tau _N}-X'_{t \wedge \tau _N}\right| \right] \le L_N(1+2 \mu ) \int _{0}^{t} \mathbb {E}\left[ \left| X_{s \wedge \tau _N}-X'_{s \wedge \tau _N}\right| \right] \mathrm{d} s. \end{aligned}$$

Thanks to Gronwall’s inequality, \(\mathbb {E}\left[ \left| X_{t \wedge \tau _N}-X'_{t \wedge \tau _N}\right| \right] =0 .\) It means \(X_{t \wedge \tau _N}=X'_{t \wedge \tau _N}\) almost surely. This leads to \(\mathbb {E}\left[ \left| X_{t}-X'_{t}\right| \right] =\mathbb {E}\left[ \left| X_{t}-X'_{t}\right| \mathbb {I}_{\left[ \tau _N \le t\right] }\right] \). By applying Cauchy’s inequality, (55) and (56) for any \(p \in (1;2)\), we obtain

$$\begin{aligned} \mathbb {E}\left[ \left| X_{t}-X'_{t}\right| \right]&\le \frac{1}{2N} \mathbb {E}\left[ \left| X_{t}-X'_{t}\right| ^2\right] +\frac{N}{2} \mathbb {P}\left[ \tau _N \le T\right] \\&\le \frac{1}{2 N} \mathbb {E}\left[ \left| X_{t}-X'_{t}\right| ^{2}\right] +\frac{1}{2N^{p-1}}\left( \mathbb {E}\left[ \sup _{0 \le t \le T}\left| X_{t}\right| ^{p}\right] +\mathbb {E}\left[ \sup _{0 \le t \le T}\left| X'_{t}\right| ^{p}\right] \right) \\&\le \frac{1}{2 N} \mathbb {E}\left[ \left| X_{t}-X'_{t}\right| ^{2}\right] +\frac{C}{2N^{p-1}}. \end{aligned}$$

Let \(N \rightarrow \infty \) we obtain \(\mathbb {E}\left[ \left| X_{t}-X'_{t}\right| \right] =0 .\) It means \(X_{t}=X'_{t}\) almost surely for any \(t \in [0;T]\). Since X and \(X'\) are càdlàg, they are indistinguishable on [0, T]. The proof is complete.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieu, TT., Luong, DT., Ngo, HL. et al. Strong convergence in infinite time interval of tamed-adaptive Euler–Maruyama scheme for Lévy-driven SDEs with irregular coefficients. Comp. Appl. Math. 41, 301 (2022). https://doi.org/10.1007/s40314-022-02015-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02015-w

Keywords

Mathematics Subject Classification