Skip to main content
Log in

Vector-valued functions on time scales and random differential equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, we first present the construction and basic properties of the Bochner integral for vector-valued functions on an arbitrary time scale. Using the properties of the Bochner integral, we develop an \(L^{p}\)-calculus for random processes on time scales, and present some results concerning the sample path and Lebesgue and \(L^{p}\)-integrability of a random process on time scales. Finally, we study random differential equations on time scales in the framework of the pth moment or \(L^{p}\)-calculus. An existence result is considered which gives sufficient conditions under which a sample path solution is also an \(L^{p}\)-solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt W, Batty CJK, Hieber M, Neubrander F (2011) Vector-valued laplace transforms and cauchy problems. Birkh äuser, Basel

    Book  Google Scholar 

  • Aulbach B, Neidhart L (2001) Integration on measure chains. In: Conference Proceedings of the sixth international conference on difference equations and applications, Augsburg

  • Bohner M, Peterson A (2001) Dynamic equations on time scales. An introduction with applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Bohner M, Peterson A (2003) Advances in dynamic equations on time scales. Birkhäuser, Boston

    Book  Google Scholar 

  • Bohner M, Sanyal S (2010) The stochastic dynamic exponential and geometric Brownian motion on isolated time scales. Commun Math Anal 8(3):120–135

    MathSciNet  MATH  Google Scholar 

  • Bohner M, Guseinov Sh G (2006) Multiple Lebesgue integration on time scales. Adv Differ Equ 12:Art. ID 26391

  • Bohner M, Stanzhytskyi OM, Bratochkina AO (2013) Stochastic dynamic equations on general time scales. Electron J Differ Equ 57:1–15

    MathSciNet  MATH  Google Scholar 

  • Burgos C, Calatayud J, Cortés JC, Villafuerte L (2018) Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Appl Math Lett 78:95–104

    Article  MathSciNet  Google Scholar 

  • Cabada A, Vivero DR (2005) Criterions for absolute continuity on time scales. J Differ Equ Appl 11(11):1013–1028

    Article  MathSciNet  Google Scholar 

  • Cabada A, Vivero DR (2006) Expression of the Lebesgue \(\Delta \)-integral on time scales as a usual Lebesgue integral; application to the calculus of \(\Delta \)-antiderivatives. Math Comput Modell 43:194–207

    Article  MathSciNet  Google Scholar 

  • Calatayud J, Cortés JC, Jornet M, Villafuerte L (2018) Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv Differ Equ 2018:392

    Article  MathSciNet  Google Scholar 

  • Cichoń M (2011) On integrals of vector-valued functions on time scales. Commun Math Anal 11(1):94–110

    MathSciNet  MATH  Google Scholar 

  • Cohn DL (1980) Measure theory. Birkhäuser, Boston

    Book  Google Scholar 

  • Cortés JC, Villafuerte L, Burgos C (2017) A mean square chain rule and its application in solving the random Chebyshev differential equation. Mediterr J Math 14:35

    Article  MathSciNet  Google Scholar 

  • Dhage BC (2009) On global existence and attractivity results for nonlinear random integral equations. Panamer Math J 19(1):97–111

    MathSciNet  MATH  Google Scholar 

  • Dhage BC (2011) On n\(^{\mathit{th}}\)-order nonlinear ordinary random differential equations. Nonlinear Oscill 13(4):535–549

    Article  MathSciNet  Google Scholar 

  • Dhage BC, Ntouyas SK (2010) Existence and attractivity results for nonlinear first order random differential equations. Opuscula Math 30(4):411–429

    Article  MathSciNet  Google Scholar 

  • Dhama S, Abbas S (2020) Square-mean almost automorphic solution of a stochastic cellular neural network on time scales. J Integral Equ Appl 32(2):151–170

    Article  MathSciNet  Google Scholar 

  • Dhama S, Abbas S, Debbouche A (2020) Doubly-weighted pseudo almost automorphic solutions for stochastic dynamic equations with Stepanov-like coefficients on time scales. Chaos Solitons Fractals 137(8):109–119

    MathSciNet  MATH  Google Scholar 

  • Du NH, Tuan LA, Dieu NT (2020) Stability of stochastic dynamic equations with time-varying delay on time scales. Stoch Anal Appl 38(12):1–20

    MathSciNet  MATH  Google Scholar 

  • Edsinger R (1968) Random ordinary differential equations. PhD. Thesis, Univ. of California, Berkeley

  • Gulsen T, Jadlovská I, Yilmaz E (2021) On the number of eigenvalues for parameter-dependent diffusion problem on time scales. Math Methods Appl Sci 44(1):985–992

    Article  MathSciNet  Google Scholar 

  • Heinonen J, Koskela P, Shanmugalingam N, Tyson JT (2015) Sobolev spaces on metric measure spaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Henríquez HR, Lizama C, Mesquita JG (2020) Semigroups on time scales and applications to abstract Cauchy problems. Topol Methods Nonlinear Anal 56(1):83–115

    MathSciNet  MATH  Google Scholar 

  • Hilger S (1988) Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD Thesis, Universität Wü rzburg

  • Hille E, Phillips R (1937) Functional Analysis and semi-groups. Amer. Math. Soc. College Publ., Providence

    Google Scholar 

  • Hytönen T, von Neerven J, Veraar M, Weis L (2016) Analysis in Banach spaces, volume I: martingales and Littlewood-Paley theory. Springer, Switzerland

    Book  Google Scholar 

  • Ladde GD, Lakshmikantham V (1980) Random differential inequalities. Academic Press, New York

    MATH  Google Scholar 

  • Lungan C, Lupulescu V (2012) Random Differential equations on time scales. Electron J Differ Equ 86:1–14

    MATH  Google Scholar 

  • Neidhart L (2001) Integration im Rahmen des Maßkettenkalkül. Diploma thesis, University of Augsburg

  • Pei Y, Bohner M, Pi D (2020) Impulsive synchronization of time-scales complex networks with time-varying topology. Commun Nonlinear Sci Numer Simulat 80:1–10

    Article  MathSciNet  Google Scholar 

  • Qin G, Wang C (2021) Lebesgue-Stieltjes combined \( \Diamond _{\alpha }\)-measure and integral on time scales. Rev R Acad Cienc Exactas Fís Nat Ser A Mat 115:50

    Article  MathSciNet  Google Scholar 

  • Rynne BP (2007) \(L^{2}\) spaces and boundary value problems on time scales. J Math Anal Appl 328:1217–1236

    Article  MathSciNet  Google Scholar 

  • Sanyal S (2008) Stochastic dynamic equations. PhD dissertation, Missouri University of Science and Technology

  • Skrzypek E, Szymańska-Dębowska K (2019) On the Lebesgue and Sobolev spaces on a time-scale. Opuscula Math 39(5):705–731

    Article  MathSciNet  Google Scholar 

  • Soong TT (1973) Random differential equations in science and engineering. Academic Press, New York

    MATH  Google Scholar 

  • Strand JL (1968) Stochastic ordinary differential eqnations. PhD Thesis, Univ. of California, Berkeley

  • Strand JL (1970) Random ordinary differential equations. J Differ Equ 7:538–553

    Article  MathSciNet  Google Scholar 

  • Wu W, Yang L (2020) Impulsive stochastic BAM neural networks on an invariant under a translation time scale. Acta Appl Math 169:647–665

    Article  MathSciNet  Google Scholar 

  • Zhang LL, Yang XD (2021) Bochner definition of Stepanov-like almost automorphic functions on time scales and an application to cellular neural networks with delays. Adv Differ Equ 2021:83

    Article  MathSciNet  Google Scholar 

  • Zhu Y, Jia G (2020) Linear feedback of mean-field stochastic linear quadratic optimal control problems on time scales. Math Probl Eng Article ID 8051918:11

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both referees for carefully reading this manuscript and making many important suggestions, leading to a better presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Lupulescu.

Additional information

Communicated by Juan Carlos Cortes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohner, M., Lupulescu, V., O’Regan, D. et al. Vector-valued functions on time scales and random differential equations. Comp. Appl. Math. 41, 153 (2022). https://doi.org/10.1007/s40314-022-01860-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01860-z

Keywords

Mathematics Subject Classification

Navigation