Skip to main content
Log in

On a family of discontinuous Galerkin fully-discrete schemes for the wave equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a family of discontinuous Galerkin (DG) fully discrete schemes for solving the second-order wave equation. The spatial variable discretization is based on an application of the DG method. The temporal variable discretization depends on a parameter \(\theta \in [0,1]\). Under suitable regularity hypotheses on the solution, optimal order error bounds are shown for the numerical schemes with \(\theta \in [\frac{1}{2},1]\), unconditionally with respect to the spatial mesh-size and the time-step, and for the numerical schemes with \(\theta \in [0,\frac{1}{2})\) where a Courant–Friedrichs–Lewy stability condition is satisfied relating the mesh-size and the time-step. The optimal order error estimates are derived for \(H^{1}(\Omega )\) and \(L^{2}(\Omega )\) norms. Simulation results are reported to provide numerical evidence of the optimal convergence orders predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adjerid S, Temimi H (2011) A discontinuous Galerkin method for the wave equation. Comput Methods Appl Mech Eng 200:837–849

    Article  MathSciNet  Google Scholar 

  • Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19:742–760

    Article  MathSciNet  Google Scholar 

  • Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779

    Article  MathSciNet  Google Scholar 

  • Baker GA (1976) Error estimates for finite element methods for second-order hyperbolic equations. SIAM J Numer Anal 13:564–576

    Article  MathSciNet  Google Scholar 

  • Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131:267–279

    Article  MathSciNet  Google Scholar 

  • Bassi F, Rebay S, Mariotti G, Pedinotti S, Savini M (1997) A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere R, Dibelius G (eds) Proceedings of 2nd European conference on turbomachinery, fluid dynamics and thermodynamics. Technologisch Instituut, Antwerpen, Belgium, 1997, pp 99–108

  • Bécache E, Joly P, Tsogka C (2000) An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J Numer Anal 37:1053–1084

    Article  MathSciNet  Google Scholar 

  • Britt S, Tsynkov S, Turkel E (2018) Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. J Comput Phys 354:26–42

    Article  MathSciNet  Google Scholar 

  • Brezzi F, Manzini G, Marini D, Pietra P, Russo A (1999) Discontinuous finite elements for diffusion problems, in Atti Convegno in onore di F. Brioschi (Milan, 1997), Istituto Lombardo, Accademia di Scienze e Lettere, Milan, Italy, 1999, pp 197–217

  • Castillo P, Cockburn B, Schötzau D, Schwab C (2002) Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput 71:455–478

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Kanschat G, Schötzau D (2005) A locally conservative LDG method for the incompressible Navier-Stokes equations. Math Comput 74:1067–1095

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Karniadakis GE, Shu C-W (2000) eds Discontinuous Galerkin methods. Theory, computation and applications, lecture notes in computer science engineering, vol 11. Springer, New York

  • Cockburn B, Shu C-W (1998) The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J Numer Anal 35:2440–2463

    Article  MathSciNet  Google Scholar 

  • Cowsar LC, Dupont TF, Wheeler MF (1990) A-priori estimates for mixed finite element methods for the wave equations. Comput Methods Appl Mech Eng 82:205–222

    Article  MathSciNet  Google Scholar 

  • Diaz J, Grote MJ (2009) Energy conserving explicit local time stepping for second-order wave equations. SIAM J Sci Comput 31:1985–2014

    Article  MathSciNet  Google Scholar 

  • Douglas J Jr, Dupont T (1976) Interior penalty procedures for elliptic and parabolic Galerkin methods, vol 58. Lecture notes in physics. Springer, Berlin

  • French DA, Peterson TE (1996) A continuous space-time finite element method for the wave equation. Math Comput 65:491–506

    Article  MathSciNet  Google Scholar 

  • Gao H, Zhao H (2013) Analysis of a numerical solver for radiative transport equation. Math Comput 82:153–172

    Article  MathSciNet  Google Scholar 

  • Grote M, Schneebeli A, Schötzau D (2006) Discontinuous Galerkin finite element method for the wave equation. SIAM J Numer Anal 44:2408–2431

    Article  MathSciNet  Google Scholar 

  • Grote M, Schötzau D (2009) Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J Sci Comput 40:257–272

    Article  MathSciNet  Google Scholar 

  • Gustafsson B, Mossberg E (2004) Time compact high order difference methods for wave propagation. SIAM J Sci Comput 26:259–271

    Article  MathSciNet  Google Scholar 

  • Han W, He L, Wang F (2019) Optimal order error estimates for discontinuous Galerkin methods for the wave equation. J Sci Comput 78:121–144

    Article  MathSciNet  Google Scholar 

  • Han W, Huang J, Eichholz J (2010) Discrete-ordinate discontinuous Galerkin methods for solving the radiative transfer equation. SIAM J Sci Comput 32:477–497

    Article  MathSciNet  Google Scholar 

  • Han W, Reddy BD (2013) Plasticity: mathematical theory and numerical analysis, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Han W, Sofonea M (2002) Quasistatic contact problems in viscoelasticity and viscoplasticity, studies in advanced mathematics, vol 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA

  • Hu C, Shu C-W (1999) A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J Sci Comput 21:666–690

    Article  MathSciNet  Google Scholar 

  • Kornhuber R, Lepsky O, Hu C, Shu C-W (2000) The analysis of the discontinuous Galerkin method for Hamilton–Jacobi equations. Appl Numer Math 33:423–434

    Article  MathSciNet  Google Scholar 

  • Kreiss HO, Petersson NA, Yström J (2002) Difference approximations for the second order wave equation. SIAM J Numer Anal 40:1940–1967

    Article  MathSciNet  Google Scholar 

  • Lions J-L, Magenes E (1972) Non-homogeneous boundary value problems and applications, vol I. Springer, New York

    Book  Google Scholar 

  • Walkington NJ (2014) Combined DG-CG time stepping for wave equations. SIAM J Numer Anal 52:1398–1417

    Article  MathSciNet  Google Scholar 

  • Wang F, Han W, Cheng X (2010) Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J Numer Anal 48:708–733

    Article  MathSciNet  Google Scholar 

  • Wang F, Han W, Cheng X (2011) Discontinuous Galerkin methods for solving Signorini problem. IMA J Numer Anal 31:1754–1772

    Article  MathSciNet  Google Scholar 

  • Wang F, Han W, Cheng X (2014) Discontinuous Galerkin methods for solving a quasistatic contact problem. Numer Math 126:771–800

    Article  MathSciNet  Google Scholar 

  • Wang F, Zhang T, Han W (2019) \(C^{0}\) discontinuous Galerkin methods for a Kirchhoff plate contact problem. J Comput Math 37:184–200

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Communicated by Pierangelo Marcati.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Limin He: The work of this author was partially supported by the National Natural Science Foundation of China (Grant No. 11801287, 62065015).

Fei Wang: The work of this author was partially supported by the National Natural Science Foundation of China (Grant No. 11771350).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Han, W. & Wang, F. On a family of discontinuous Galerkin fully-discrete schemes for the wave equation. Comp. Appl. Math. 40, 56 (2021). https://doi.org/10.1007/s40314-021-01423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01423-8

Keywords

Mathematics Subject Classification

Navigation