Skip to main content
Log in

A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study and analyze a new projection-type algorithm for solving pseudomonotone variational inequality problems in real Hilbert spaces. The advantage of the proposed algorithm is the strong convergence proved without assuming Lipschitz continuity of the associated mapping. In addition, the proposed algorithm uses only two projections onto the feasible set in each iteration. The numerical behaviors of the proposed algorithm on a test problem are illustrated and compared with several previously known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Antipin AS (1976) On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. i Mat. Metody. 12:1164–1173

    Google Scholar 

  • Bauschke HH, Combettes PL (2011) Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York

    Book  Google Scholar 

  • Bello Cruz JY, Iusem AN (2009) A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30:23–36

    Article  MathSciNet  Google Scholar 

  • Bello Cruz JY, Iusem AN (2010) Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 46:247–263

    Article  MathSciNet  Google Scholar 

  • Bello Cruz JY, Iusem AN (2012) An explicit algorithm for monotone variational inequalities. Optimization 61:855–871

    Article  MathSciNet  Google Scholar 

  • Bello Cruz JY, Iusem AN (2015) Full convergence of an approximate projection method for nonsmooth variational inequalities. Math. Comput. Simul. 114:2–13

    Article  MathSciNet  Google Scholar 

  • Bello Cruz JY, Díaz Millán R, Phan HM (2019) Conditional extragradient algorithms for solving variational inequalities. Pac. J. Optim. 15:331–357

    MathSciNet  Google Scholar 

  • Cegielski A (2012) Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics 2057. Springer, Berlin

    Google Scholar 

  • Censor Y, Gibali A, Reich S (2011a) The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148:318–335

    Article  MathSciNet  Google Scholar 

  • Censor Y, Gibali A, Reich S (2011b) Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26:827–845

    Article  MathSciNet  Google Scholar 

  • Censor Y, Gibali A, Reich S (2011c) Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61:1119–1132

    Article  MathSciNet  Google Scholar 

  • Cottle RW, Yao JC (1992) Pseudomonotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75:281–295

    Article  MathSciNet  Google Scholar 

  • Facchinei F, Pang JS (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols, vol 1. Springer, New York

    Google Scholar 

  • Gibali A, Thong DV, Tuan PA (2019) Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9:2203–2225

    Article  MathSciNet  Google Scholar 

  • Goebel K, Reich S (1984) Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York

    MATH  Google Scholar 

  • Halpern B (1967) Fixed points of nonexpanding maps. Proc. Am. Math. Soc. 73:957–961

    MathSciNet  MATH  Google Scholar 

  • He YR (2006) A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185:166–173

    Article  MathSciNet  Google Scholar 

  • Iusem AN (1994) An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13:103–114

    MathSciNet  MATH  Google Scholar 

  • Iusem AN, Garciga OR (2001) Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22:609–640

    Article  MathSciNet  Google Scholar 

  • Iusem AN, Svaiter BF (1997) A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42:309–321

    Article  MathSciNet  Google Scholar 

  • Kanzow C, Shehu Y (2018) Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces. J. Fixed Point Theory Appl. 20:51

    Article  MathSciNet  Google Scholar 

  • Karamardian S (1976) Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18:445–454

    Article  MathSciNet  Google Scholar 

  • Konnov IV (1997) A class of combined iterative methods for solving variational inequalities. J. Optim. Theory Appl. 94:677–693

    Article  MathSciNet  Google Scholar 

  • Konnov IV (1998) A combined relaxation method for variational inequalities with nonlinear constraints. Math. Progr. 80:239–252

    MathSciNet  MATH  Google Scholar 

  • Konnov IV (2001) Combined Relaxation Methods for Variational Inequalities. Springer, Berlin

    Book  Google Scholar 

  • Korpelevich GM (1976) The extragradient method for finding saddle points and other problems. Ekonom. i Mat. Metody. 12:747–756

    MathSciNet  MATH  Google Scholar 

  • Maingé PE (2008) A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47:1499–1515

    Article  MathSciNet  Google Scholar 

  • Maingé P-E, Gobinddass ML (2016) Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171:146–168

    Article  MathSciNet  Google Scholar 

  • Malitsky YV (2015) Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25:502–520

    Article  MathSciNet  Google Scholar 

  • Moudafi A (2000) Viscosity approximating methods for fixed point problems. J. Math. Anal. Appl. 241:46–55

    Article  MathSciNet  Google Scholar 

  • Solodov MV, Svaiter BF (1999) A new projection method for variational inequality problems. SIAM J. Control Optim. 37:765–776

    Article  MathSciNet  Google Scholar 

  • Thong DV, Hieu DV (2018) Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 79:597–610

    Article  MathSciNet  Google Scholar 

  • Thong DV, Hieu DV (2019) Mann-type algorithms for variational inequality problems and fixed point problems. Optimization. https://doi.org/10.1080/02331934.2019.1692207

  • Thong DV, Vuong PT (2019) Modifed Tseng’s extragradient methods for solving pseudomonotone variational inequalities. Optimization 68:2203–2222

    MathSciNet  MATH  Google Scholar 

  • Thong DV, Gibali A (2019a) Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces. Jpn J. Ind. Appl. Math. 36:299–321

    Article  MathSciNet  Google Scholar 

  • Thong DV, Gibali A (2019b) Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 21:20. https://doi.org/10.1007/s11784-018-0656-9

    Article  MathSciNet  MATH  Google Scholar 

  • Thong DV, Triet NA, Li XH, Dong QL (2019a) Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems. Numer. Algorithms. https://doi.org/10.1007/s11075-019-00718-6

  • Thong DV, Hieu DV, Rassias TM (2019b) Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. https://doi.org/10.1007/s11590-019-01511-z

  • Thong DV, Shehu Y, Iyiola OS (2019c) Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer. Algorithms. https://doi.org/10.1007/s11075-019-00780-0

  • Vuong PT (2018) On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176:399–409

    Article  MathSciNet  Google Scholar 

  • Vuong PT, Shehu Y (2019) Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81:269–291

    Article  MathSciNet  Google Scholar 

  • Xu HK (2002) Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66:240–256

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associate Editor and anonymous reviewers for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper. This work is supported by Vietnam (National Foundation for Science and Technology Development (NAFOSTED)) under the project: 101.01-2019.320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Additional information

Communicated by Paulo J. S. Silva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Shehu, Y. & Iyiola, O.S. A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators. Comp. Appl. Math. 39, 108 (2020). https://doi.org/10.1007/s40314-020-1136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1136-6

Keywords

Mathematics Subject Classification

Navigation