Skip to main content
Log in

Discontinuous Galerkin methods for fractional elliptic problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a mathematical framework for studying different versions of discontinuous Galerkin (DG) approaches for solving 2D Riemann–Liouville fractional elliptic problems on a finite domain. The boundedness and stability analysis of the primal bilinear form are provided. A priori error estimate under energy norm and optimal error estimate under \(L^{2}\) norm are obtained for DG methods of the different formulations. Finally, the performed numerical examples confirm the optimal convergence order of the different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboelenen T (2018a) Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger type equations. Nonlinear Dyn 92(2):395–413

    MATH  Google Scholar 

  • Aboelenen T (2018b) A direct discontinuous Galerkin method for fractional convection-diffusion and Schrödinger-type equations. Eur Phys J Plus 133(8):316

    MATH  Google Scholar 

  • Aboelenen T (2018c) A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun Nonlinear Sci Numer Simul 54:428–452. https://doi.org/10.1016/j.cnsns.2017.06.018

    Article  MathSciNet  Google Scholar 

  • Aboelenen T, El-Hawary H (2017) A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn–Hilliard equation. Comput Math Appl 73(6):1197–1217

    MathSciNet  MATH  Google Scholar 

  • Aboelenen T, Bakr S, El-Hawary H (2015) Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain. Int J Comput Math. https://doi.org/10.1080/00207160.2015.1119270

    Article  MATH  Google Scholar 

  • Adams RA (1975) Sobolev spaces. Academic Press, New York

    MATH  Google Scholar 

  • Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19(4):742–760

    MathSciNet  MATH  Google Scholar 

  • Arnold DN, Brezzi F, Cockburn B, Marini D (2000) Discontinuous Galerkin methods for elliptic problems. Lect Notes Comput Sci Eng 11:89–102

    MathSciNet  MATH  Google Scholar 

  • Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5):1749–1779

    MathSciNet  MATH  Google Scholar 

  • Baker GA (1977) Finite element methods for elliptic equations using nonconforming elements. Math Comput 31(137):45–59

    MathSciNet  MATH  Google Scholar 

  • Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131(2):267–279

    MathSciNet  MATH  Google Scholar 

  • Baumann CE, Oden JT (1999) A discontinuous hp finite element method for convection-diffusion problems. Comput Methods Appl Mech Eng 175(3–4):311–341

    MathSciNet  MATH  Google Scholar 

  • Brenner SC, Owens L, Sung LY (2008) A weakly over-penalized symmetric interior penalty method. Electron Trans Numer Anal 30:107–127

    MathSciNet  MATH  Google Scholar 

  • Castillo P (2000) An optimal estimate for the local discontinuous Galerkin method. In: Cockburn B, Karniadakis GE, Shu CW (eds) Discontinuous Galerkin methods. Lecture notes in computational science and engineering, vol 11. Springer, Berlin, Heidelberg, pp 285–290

    Google Scholar 

  • Castillo P, Cockburn B, Perugia I, Schötzau D (2000) An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal 38(5):1676–1706

    MathSciNet  MATH  Google Scholar 

  • Cockburn B (1999) High-order methods for computational physics, chap discontinuous Galerkin methods for convection-dominated problems. Springer, Berlin, pp 69–224. https://doi.org/10.1007/978-3-662-03882-6_2

  • Cockburn B, Dawson C (2002) Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Comput Geosci 6(3–4):505–522

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework. Math Comput 52(186):411–435

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Kanschat G, Schötzau D (2005) A locally conservative LDG method for the incompressible Navier–Stokes equations. Math Comput 74(251):1067–1095

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2):1319–1365

    MathSciNet  MATH  Google Scholar 

  • Cuesta E, Kirane M, Malik SA (2012) Image structure preserving denoising using generalized fractional time integrals. Signal Process 92(2):553–563

    Google Scholar 

  • Deng W (2009) Finite element method for the space and time fractional Fokker–Planck equation. SIAM J Numer Anal 47(1):204–226. https://doi.org/10.1137/080714130

    Article  MathSciNet  MATH  Google Scholar 

  • Deng W, Hesthaven JS (2013) Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math Model Numer Anal 47(6):1845–1864

    MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Differ Equ 22(3):558–576. https://doi.org/10.1002/num.20112

    Article  MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Heuer N, Roop JP (2007) Numerical approximation of a time dependent, nonlinear, space fractional diffusion equation. SIAM J Numer Anal 45(2):572–591. https://doi.org/10.1137/050642757

    Article  MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019a) Numerical analysis of time fractional Black–Scholes european option pricing model arising in financial market. Comput Appl Math 38(4):173

    MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019b) Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int J Appl Comput Math 5(3):50

    MathSciNet  MATH  Google Scholar 

  • Hesthaven JS, Warburton T (2007) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Ji X, Tang H (2012) High-order accurate Runge–Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations. Numer Math Theory Methods Appl 5(3):333–358

    MathSciNet  MATH  Google Scholar 

  • Jin B, Lazarov R, Pasciak J, Zhou Z (2014) Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J Numer Anal 52(5):2272–2294

    MathSciNet  MATH  Google Scholar 

  • Kharazmi E, Zayernouri M, Karniadakis GE (2017) A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput Methods Appl Mech Eng 324:512–536

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204 (North-Holland Mathematics Studies). Elsevier Science Inc., New York

  • Kilbas A, Marichev O, Samko S (1993) Fractional integral and derivatives (theory and applications). Gordon Breach Switz 1(993):1

    MATH  Google Scholar 

  • Li X, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal 47(3):2108–2131. https://doi.org/10.1137/080718942

    Article  MathSciNet  MATH  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House, Redding

    Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, Singapore

    MATH  Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77. https://doi.org/10.1016/j.cam.2004.01.033

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211(1):249–261. https://doi.org/10.1016/j.jcp.2005.05.017

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(31):R161

    MathSciNet  MATH  Google Scholar 

  • Miller K, Ross B (1993) An Introduction to the fractional calculus and fractional differential equations. Wiley, Hoboken. https://books.google.co.in/books?id=MOp_QgAACAAJ

  • Moffatt HK, Zaslavsky G, Comte P, Tabor M (2013) Topological aspects of the dynamics of fluids and plasmas, vol 218. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Mustapha K, McLean W (2011) Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms 56(2):159–184. https://doi.org/10.1007/s11075-010-9379-8

    Article  MathSciNet  MATH  Google Scholar 

  • Mustapha K, McLean W (2012) Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J Numer Anal 32(3):906–925

    MathSciNet  MATH  Google Scholar 

  • Mustapha K, McLean W (2013) Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J Numer Anal 51(1):491–515

    MathSciNet  MATH  Google Scholar 

  • Nikan O, Machado JT, Golbabai A, Nikazad T (2019) Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97(4):2757–2775

    MATH  Google Scholar 

  • Nikan O, Golbabai A, Machado JT, Nikazad T (2020) Numerical solution of the fractional rayleigh–stokes model arising in a heated generalized second-grade fluid. Eng Comput. https://doi.org/10.1007/s00366-019-00913-y

  • Oden JT, Babuŝka I, Baumann CE (1998) A discontinuous hp finite element method for diffusion problems. J Comput Phys 146(2):491–519

    MathSciNet  MATH  Google Scholar 

  • Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41(1):9–12

    MATH  Google Scholar 

  • Peraire J, Persson PO (2008) The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J Sci Comput 30(4):1806–1824

    MathSciNet  MATH  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press, Cambridge

    MATH  Google Scholar 

  • Qiu L, Deng W, Hesthaven JS (2015a) Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes. J Comput Phys 298:678–694. https://doi.org/10.1016/j.jcp.2015.06.022

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu L, Deng W, Hesthaven JS (2015b) Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes. J Comput Phys 298:678–694

    MathSciNet  MATH  Google Scholar 

  • Rivière B, Wheeler MF, Girault V (1999) Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput Geosci 3(3):337–360

    MathSciNet  MATH  Google Scholar 

  • Rivière B, Wheeler MF, Girault V (2001) A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J Numer Anal 39(3):902–931

    MathSciNet  MATH  Google Scholar 

  • Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos Interdiscip J Nonlinear Sci 7(4):753–764

    MathSciNet  MATH  Google Scholar 

  • Tadjeran C, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220(2):813–823. https://doi.org/10.1016/j.jcp.2006.05.030

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media, Berlin

    Google Scholar 

  • Wang H, Yang D (2013) Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J Numer Anal 51(2):1088–1107

    MathSciNet  MATH  Google Scholar 

  • Wang J, Ye X (2013) A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math 241:103–115

    MathSciNet  MATH  Google Scholar 

  • Wheeler MF (1978) An elliptic collocation-finite element method with interior penalties. SIAM J Numer Anal 15(1):152–161

    MathSciNet  MATH  Google Scholar 

  • Xu Q, Hesthaven JS (2014) Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J Numer Anal 52(1):405–423. https://doi.org/10.1137/130918174

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371(6):461–580

    MathSciNet  MATH  Google Scholar 

  • Zaslavsky G, Edelman M (2001) Weak mixing and anomalous kinetics along filamented surfaces. Chaos Interdiscip J Nonlinear Sci 11(2):295–305

    MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2013) Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252:495–517. https://doi.org/10.1016/j.jcp.2013.06.031

    Article  MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2014) Exponentially accurate spectral and spectral element methods for fractional ODEs. J Comput Phys 257(Part A):460–480. https://doi.org/10.1016/j.jcp.2013.09.039

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong Sun Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209. https://doi.org/10.1016/j.apnum.2005.03.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their excellent comments and suggestions to revise and enhance portions of this paper. The author is also very much grateful to Editor-in-Chief (Prof. José E. Souza de Cursi) and Associate Editor (Prof. José A. Tenreiro Machado) for their pursuance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Aboelenen.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelenen, T. Discontinuous Galerkin methods for fractional elliptic problems. Comp. Appl. Math. 39, 88 (2020). https://doi.org/10.1007/s40314-020-1117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1117-9

Keywords

Mathematics Subject Classification

Navigation