Skip to main content

Advertisement

Log in

FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present study, a novel fractional Meyer neuro-evolution-based intelligent computing solver (FMNEICS) is presented for numerical treatment of doubly singular multi-fractional Lane–Emden system (DSMF-LES) using combined heuristics of Meyer wavelet neural networks (MWNN) optimized with global search efficacy of genetic algorithms (GAs) and sequential quadratic programming (SQP), i.e., MWNN-GASQP. The design of novel FMNEICS for DSMF-LES is presented after derivation from standard Lane–Emden equation, and the singular points and shape factors along with fractional-order terms are analyzed. The MWNN modeling strength is used to represent the system model DSMF-LES in the mean-squared error-based merit function and optimization of the networks is carried out with integrated optimization ability of GASQP. The verification, validation, and perfection of the FMNEICS for three different cases of DSMF-LES are established through comparative studies from reference solutions on convergence, robustness, accuracy, and stability measures. Moreover, the observations through the statistical analysis further authenticate the worth of proposed fractional MWNN-GASQP-based stochastic solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmad I et al (2016) Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 5(1):1866

    Google Scholar 

  • Ahmad I et al (2018a) Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur Phys J Plus 133(5):184

    Google Scholar 

  • Ahmad I et al (2018b) Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput Appl 29(7):449–466

    Google Scholar 

  • Ahmad I et al (2019) Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput Appl 31(12):9041–9059

    Google Scholar 

  • Ahmad SUI et al (2020) A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines. Eur Phys J Plus 135:1–29

    Google Scholar 

  • Akbar S et al (2017) Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wirel Pers Commun 96(1):1475–1494

    Google Scholar 

  • Aman S, Khan I, Ismail Z, Salleh MZ (2018) Applications of fractional derivatives to nanofluids: exact and numerical solutions. Math Model Natural Phenomena 13(1):2

    MathSciNet  MATH  Google Scholar 

  • Ara A et al (2018) Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling. Adv Differ Equ 2018(1):8

    MathSciNet  MATH  Google Scholar 

  • Asadpour S, Hosseinzadeh H, Yazdani A (2019) Numerical solution of the Lane–Emden equations with moving least squares method. Appl Appl Math 14:2

    MathSciNet  MATH  Google Scholar 

  • Baleanu D, Machado JAT, Luo AC (eds) (2011) Fractional dynamics and control. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Bǎleanu D, Lopes AM (eds) (2019) Applications in engineering, life and social sciences. Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110571905

  • Bonilla B, Rivero M, Trujillo JJ (2007) On systems of linear fractional differential equations with constant coefficients. Appl Math Comput 187(1):68–78

    MathSciNet  MATH  Google Scholar 

  • Bukhari AH et al (2020) Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alexandria Engineering Journal 59(1):101–116

    Google Scholar 

  • Căruntu B, Bota C, Lăpădat M, Paşca MS (2019) Polynomial least squares method for fractional Lane–Emden equations. Symmetry 11(4):479

    MATH  Google Scholar 

  • Dabiri A, Butcher EA (2019) Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients. J Vib Control 25(7):1379–1392

    MathSciNet  Google Scholar 

  • Dabiri A, Butcher EA, Poursina M, Nazari M (2017a) Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems. IEEE Trans Autom Control 63(4):989–1002

    MathSciNet  MATH  Google Scholar 

  • Dabiri A, Butcher EA, Nazari M (2017b) Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J Sound Vib 388:230–244

    Google Scholar 

  • Dabiri A, Moghaddam BP, Machado JT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48

    MathSciNet  MATH  Google Scholar 

  • Daou RAZ, El Samarani F, Yaacoub C, Moreau X (2020) Fractional derivatives for edge detection: application to road obstacles. In: Smart cities performability, cognition, & security (pp 115–137). Springer, Cham.

  • Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    MathSciNet  MATH  Google Scholar 

  • Diethelm K and Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Scientific computing in chemical engineering II (pp 217–224). Springer, Berlin, Heidelberg

  • Engheia N (1997) On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag 39(4):35–46

    Google Scholar 

  • Evans RM, Katugampola UN, Edwards DA (2017) Applications of fractional calculus in solving Abel-type integral equations: Surface–volume reaction problem. Comput Math Appl 73(6):1346–1362

    MathSciNet  MATH  Google Scholar 

  • Farooq MU (2019) Noether-like operators and first integrals for generalized systems of Lane–Emden equations. Symmetry 11(2):162

    MATH  Google Scholar 

  • Hadian-Rasanan AH, Rahmati D, Gorgin S, Parand K (2020) A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation. New Astron 75:101307

    Google Scholar 

  • Hassan A, Kamran M, Illahi A, Zahoor RMA (2019) Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system. Eur Phys J Plus 134(3):122

    Google Scholar 

  • He JH, Ji FY (2019) Taylor series solution for Lane–Emden equation. J Math Chem 57(8):1932–1934

    MathSciNet  MATH  Google Scholar 

  • Hilfer R (ed) (2000) Applications of fractional calculus in physics (Vol. 35, no. 12). World scientific, Singapore, pp 87–130

    MATH  Google Scholar 

  • Ibrahim RW, Momani S (2007) On the existence and uniqueness of solutions of a class of fractional differential equations. J Math Anal Appl 334(1):1–10

    MathSciNet  MATH  Google Scholar 

  • Jamal R et al (2019) Hybrid bio-inspired computational Heuristic paradigm for integrated load dispatch problems involving Stochastic wind. Energies 12(13):2568

    Google Scholar 

  • Jaradat I, Al-Dolat M, Al-Zoubi K, Alquran M (2018) Theory and applications of a more general form for fractional power series expansion. Chaos Solitons Fract 108:107–110

    MathSciNet  MATH  Google Scholar 

  • Khalifa AS, Hassan HN (2019) Approximate solution of Lane–Emden Type equations using variation of parameters method with an auxiliary parameter. J Appl Math Phys 7(04):921

    Google Scholar 

  • Khan WU et al (2018) Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems. Appl Soft Comput 73:666–683

    Google Scholar 

  • Lodhi S et al (2019) Fractional neural network models for nonlinear Riccati systems. Neural Comput Appl 31(1):359–378

    Google Scholar 

  • Majeed K et al (2017) A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system. Appl Soft Comput 56:420–435

    Google Scholar 

  • Masood Z et al (2020) Design of fractional order epidemic model for future generation tiny hardware implants. Future Gener Comput Syst 106:43–54

    Google Scholar 

  • Matlob MA, Jamali Y (2019) The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer. Crit Rev Biomedl Eng 47:4

    Google Scholar 

  • Mehmood A et al (2019) Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. Neural Comput Appl 2019:1–17

    Google Scholar 

  • Mishra SUCHANA, Mishra LN, Mishra RK, Patnaik SRIKANTA (2019) Some applications of fractional calculus in technological development. J Fract Calcul Appl 10(1):228–235

    MathSciNet  Google Scholar 

  • Moghadam BP, Dabiri A, Machado JT (2019) Applications in engineering, life and social sciences. In: Machado JT, Baleanu D, Lopes AM, Chen Y (eds) Handbook of fractional calculus with applications. Springer, New York

    Google Scholar 

  • Momani S, Ibrahim RW (2008) On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras. J Math Anal Appl 339(2):1210–1219

    MathSciNet  MATH  Google Scholar 

  • Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093

    MathSciNet  MATH  Google Scholar 

  • Raja MAZ, Samar R, Manzar MA, Shah SM (2017a) Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley-Torvik equation. Math Comput Simul 132:139–158

    MathSciNet  Google Scholar 

  • Raja MAZ, Shah FH, Alaidarous ES, Syam MI (2017b) Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl Soft Comput 52:605–629

    Google Scholar 

  • Raja MAZ, Shah Z, Manzar MA, Ahmad I, Awais M, Baleanu D (2018a) A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. Eur Phys J Plus 133(7):254

    Google Scholar 

  • Raja MAZ, Shah FH, Syam MI (2018b) Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput Appl 30(12):3651–3675

    Google Scholar 

  • Raja MAZ, Umar M, Sabir Z, Khan JA, Baleanu D (2018c) A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur Phys J Plus 133(9):364

    Google Scholar 

  • Raja MAZ, Shah FH, Tariq M, Ahmad I (2018d) Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput Appl 29(6):83–109

    Google Scholar 

  • Raja MAZ, Mehmood J, Sabir Z, Nasab AK, Manzar MA (2019) Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput Appl 31(3):793–812

    Google Scholar 

  • Raja MAZ et al (2020) Integrated intelligence of fractional neural networks and sequential quadratic programming for Bagley-Torvik systems arising in fluid mechanics. J Comput Nonlinear Dyn 15:5

    Google Scholar 

  • Sabir Z et al (2018) Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl Soft Comput 65:152–169

    Google Scholar 

  • Sabir Z et al (2020) Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation. Math Comput Simul 172:1–14

    MathSciNet  Google Scholar 

  • Singh R, Garg H, Guleria V (2019a) Haar wavelet collocation method for Lane–Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions. J Comput Appl Math 346:150–161

    MathSciNet  MATH  Google Scholar 

  • Singh R, Shahni J, Garg H, Garg A (2019b) Haar wavelet collocation approach for Lane–Emden equations arising in mathematical physics and astrophysics. Eur Phys J Plus 134(11):548

    Google Scholar 

  • Sumelka W (2014) Fractional viscoplasticity. Mech Res Commun 56:31–36

    Google Scholar 

  • Sun Z, Tian Y, Li H, Wang J (2016) A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control. Optimal Control Appl Methods 37(6):1139–1161

    MathSciNet  MATH  Google Scholar 

  • Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    MATH  Google Scholar 

  • Torvik PJ, Bagley RL (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51(2):294–298

    MATH  Google Scholar 

  • Uchaikin VV (2013) Fractional derivatives for physicists and engineers, vol 2. Springer, Berlin

    MATH  Google Scholar 

  • Umar M et al (2019) Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl Soft Comput 80:506–524

    Google Scholar 

  • Waseem W et al (2020) A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alexandria Eng J 59(1):11–24

    MathSciNet  Google Scholar 

  • Wazwaz AM (2001) A new algorithm for solving differential equations of Lane–Emden type. Appl Math Comput 118(2–3):287–310

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2015) Solving two Emden-Fowler type equations of third order by the variational iteration method. Appl Math Inf Sci 9(5):2429

    MathSciNet  Google Scholar 

  • Yang XJ, Machado JT, Cattani C, Gao F (2017) On a fractal LC-electric circuit modeled by local fractional calculus. Commun Nonlinear Sci Numer Simul 47:200–206

    MATH  Google Scholar 

  • Yin KL, Pu YF, Lu L (2020) Combination of fractional FLANN filters for solving the Van der Pol-Duffing oscillator. Neurocomputing 399:183–192

    Google Scholar 

  • Yu F (2009) Integrable coupling system of fractional soliton equation hierarchy. Phys Lett A 373(41):3730–3733

    MathSciNet  MATH  Google Scholar 

  • Zameer A et al (2019) Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures. Soft Comput 23(10):3449–3463

    Google Scholar 

  • Zhang Y, Sun H, Stowell HH, Zayernouri M, Hansen SE (2017a) A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fract 102:29–46

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Yang X, Cattani C, Dong Z, Yuan T, Han L (2017b) Theory and applications of fractional fourier transform and its variants. Fund Inf 151:1–4

    MathSciNet  Google Scholar 

  • Zhao D, Pan X, Luo M (2018) A new framework for multivariate general conformable fractional calculus and potential applications. Phys A 510:271–280

    MathSciNet  Google Scholar 

  • Zúñiga-Aguilar CJ, Romero-Ugalde HM, Gómez-Aguilar JF, Escobar-Jiménez RF, Valtierra-Rodríguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fract 103:382–403

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.F. Gómez-Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, Z., Raja, M.A.Z., Shoaib, M. et al. FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system. Comp. Appl. Math. 39, 303 (2020). https://doi.org/10.1007/s40314-020-01350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01350-0

Keywords

Mathematics Subject Classification

Navigation