Skip to main content
Log in

A new study on some Vandermonde matrices and systems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first introduce a new concept on matrices which we call annihilator vectors. Then using the shifted form of these vectors, we propose new algorithms for (1) computing the inverse of a Vandermonde matrix, (2) solving some Vandermonde systems of linear equations, both algorithms in \(O(n^2)\) arithmetic operations. Our methods are based on a new technique which lead to novel algorithms, need less storage and, from experimental results, are more efficient than the previous usual methods. Finally, comparisons with other methods are broached and some numerical examples are supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliyari Ghassabeh Y (2016) A recursive algorithm for computing the inverse of the Vandermonde matrix. Cogent Eng 3:1175061

    Article  Google Scholar 

  • Ballester C, Pereyra V (1967) On the construction of discrete approximations to linear differential expressions. Math Comput 21:297–302

    Article  MathSciNet  Google Scholar 

  • Bazaraa MS, Jarvis JJ, Sherali HD (2010) Linear Programming and Network Flows, 4th edn. Thomson Learning, Wiley, New York

    MATH  Google Scholar 

  • Ben Taher R, Rachidi M (2016) Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula. Appl Math Comput 290:267–280

    MathSciNet  MATH  Google Scholar 

  • Bjorck A, Pereyra V (1970) Solution of Vandermonde systems of equations. AMS 24(112):893–903

    MathSciNet  MATH  Google Scholar 

  • Chui CK, Lai MK (1988) Vandermonde determinant and Lagrange interpolation in \({\mathbb{R}}^s\). In: Lin BL (ed) Nonlinear and convex analysis. Marcel Dekker, New York

    Google Scholar 

  • Eisinberg A, Fedele G (2006) On the inversion of the Vandermonde matrix. Appl Math Comput 174:1384–1397

    MathSciNet  MATH  Google Scholar 

  • El-Mikkawya MEA (2003) Inversion of a generalized Vandermonde matrix. Int J Comput Math 80:759–765

    Article  MathSciNet  Google Scholar 

  • Galimberti G, Pereyra V (1970a) Solving Confluent Vandermonde Systems of Hermite Type, Pub. 70-02, Dep. de Comp., U. Central de Venezuela, Caracas

  • Galimberti G, Pereyra V (1970b) Numerical differentiation and the solution of multidimensional Vandermonde systems, Pub. 69-07, Dep. de Comp., U. Central de Venezuela, Caracas, 1969; Math. Comp., vol 24, pp 357–364

  • Gautschi W, Inglese G (1988) Lower bounds for the condition number of Vandermonde matrix. Numer Math 52:241–250

    Article  MathSciNet  Google Scholar 

  • Gohberg I, Olshevsky V (1997) The fast generalized Parker-Traub algorithm for inversion of Vandermonde and related matrices. J Complex 13:208–234

    Article  MathSciNet  Google Scholar 

  • Gustafson S-A (1970) Rapid computation of interpolation formulae and mechanical quadrature rules, Technical report CS #70-152, Stanford University, Stanford

  • Jerome JW, Schumaker LL (1967) A note on obtaining natural spline functions by the abstract approach of laurent, MRC Technical Report #776, University of Wisconsin, Madison

  • Kaufman I (1969) The inversion of the Vandermonde matrix and transformation to the Jordan canonical form. IEEE Trans Autom Control 14:774–777

    Article  MathSciNet  Google Scholar 

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  Google Scholar 

  • Lyness JN, Moler CB (1966) Vandermonde systems and numerical differentiation. Numer Math 8:458–464

    Article  MathSciNet  Google Scholar 

  • Mirsky L (2011) An introduction to linear algebra. Dover Publications, New York

    MATH  Google Scholar 

  • Neagoe V (1996) Inversion of the Van der Monde matrix. IEEE Signal Process Lett 3:119–120

    Article  Google Scholar 

  • Olkkonen H, Olkkonen JT (2010) Sampling and reconstruction of transient signals by parallel exponential filters. IEEE Trans Circuits Syst Part II Express Briefs 57:426–429

    Article  Google Scholar 

  • Phillips GM (2003) Interpolation and approximation by polynomials. Springer, New York

    Book  Google Scholar 

  • Phillips GMM, Taylor PJ (1996) Theory and applications of numerical analysis. Elsevier Science & Technology Books, Amsterdam

    Google Scholar 

  • Respondek JS (2016) Incremental numerical recipes for the high efficient inversion of the confluent Vandermonde matrices. Comput Math Appl 71:489–502

    Article  MathSciNet  Google Scholar 

  • Ryan O, Debbah M (2009) Asymptotic behaviour of random Vandermonde matrices with entries on the unit circle. IEEE Trans Inf Theory 55:3115–3147

    Article  Google Scholar 

  • Strang G (1988) Linear algebra and its applications, 3rd edn. Thomson Learning Inc., Boston

    MATH  Google Scholar 

  • Tou J (1964) Determination of the inverse Vandermonde matrix. IEEE Trans Autom Control 9:314

    Article  Google Scholar 

  • Van de Vel H (1977) Numerical treatment of a generalized Vandermonde system of equations. Linear Algebra Appl 17:149–179

    Article  MathSciNet  Google Scholar 

  • Wang Z, Scaglione A, Giannakis G, Barbarossa S (1999) Vandermonde–Lagrange mutually orthogonal flexible transceivers for blind CDMA in unknown multipath. In: Proceedings of 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications, Minneapolis, pp 42–45

  • Wertz H (1965) On the numerical inversion of a recurrent problem: the Vandermonde matrix. IEEE Trans Autom Control 10:492

    Article  Google Scholar 

  • Wilf HS (1958) Curve-fitting matrices. Am Math Mon 65:272–274

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sohrabi.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, S., Moradinejad, A. A new study on some Vandermonde matrices and systems. Comp. Appl. Math. 39, 258 (2020). https://doi.org/10.1007/s40314-020-01312-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01312-6

Keywords

Mathematics Subject Classification

Navigation