Two variations of graph test in double description method

Abstract

This paper concerns checking adjacency in the double description method for constructing a generating system of a polyhedral cone. We propose two new variations of the graph test. Theoretical estimates and experimental results show that the new variations are usually superior to the original algorithm in terms of speed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Assarf B, Gawrilow E, Herr K, Joswig M, Lorenz B, Paffenholz A, Rehn T (2017) Computing convex hulls and counting integer points with polymake. Math Programm Comput 9(1):1–38

    MathSciNet  MATH  Article  Google Scholar 

  2. Avis D (2000) A revised implementation of the reverse search vertex enumeration algorithm. Polytopes–combinatorics and computation. Birkhäuser, Basel, pp 177–198

    Google Scholar 

  3. Avis D, Bremner D, Seidel R (1997) How good are convex hull algorithms? Comput Geom 7(5–6):265–301

    MathSciNet  MATH  Article  Google Scholar 

  4. Avis D, Fukuda K (1992) A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput Geom 8(3):295–313

    MathSciNet  MATH  Article  Google Scholar 

  5. Bagnara R, Hill PM, Zaffanella E (2008) The Parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci Comput Programm 72(1–2):3–21

    MathSciNet  Article  Google Scholar 

  6. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw (TOMS) 22(4):469–483

    MathSciNet  MATH  Article  Google Scholar 

  7. Bastrakov SI, Zolotykh NYu (2015) Fast method for verifying Chernikov rules in Fourier-Motzkin elimination. Comput Math Math Phys 55(1):160–167

    MathSciNet  MATH  Article  Google Scholar 

  8. Bremner D, Fukuda K, Marzetta A (1998) Primal-dual methods for vertex and facet enumeration. Discrete Comput Geom 20(3):333–357

    MathSciNet  MATH  Article  Google Scholar 

  9. Burger E (1956) Über homogene lineare ungleichungssysteme. Zeitschrift für Angewandte Mathematik und Mechanik 36:135–139

    MathSciNet  MATH  Article  Google Scholar 

  10. Chernikova NV (1964) Algorithm for finding a general formula for the non-negative solutions of system of linear equations. U.S.S.R. Comput Math Math Phys 4(4):151–158

    MATH  Article  Google Scholar 

  11. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT press, Cambridge, MA

    Google Scholar 

  12. Demenkov M, Filimonov N (2016) Polyhedral barrier regulator design using non-monotonic Lyapunov function. In: Proceedings of 2016 international conference on stability and oscillations of nonlinear control systems (Pyatnitskiy’s Conference), STAB 2016, VA. Trapeznikov Institute of Control Sciences, Moscow. https://doi.org/10.1109/STAB.2016.7541176

  13. Fernández F, Quinton P (1988) Extension of Chernikova’s algorithm for solving general mixed linear programming problems. Research report, RR-0943, INRIA. https://hal.inria.fr/inria-00075615/document. Accessed 12 May 2019

  14. Fukuda K, Prodon A (1996) Double description method revisited. In: Deza M, Euler R, Manoussakis I (eds) Lecture notes in computer science, vol 1120. Springer-Verlag, New York, pp 91–111

    Google Scholar 

  15. Genov B (2014) The convex hull problem in practice. PhD thesis, Universität Bremen. https://elib.suub.uni-bremen.de/edocs/00104422-1.pdf. Accessed 12 May 2019

  16. Hemmecke R, Malkin PN (2009) Computing generating sets of lattice ideals and Markov bases of lattices. J Symbol Comput 44(10):1463–1476

    MathSciNet  MATH  Article  Google Scholar 

  17. Horst R, Pardalos PM, Van Thoai N (2000) Introduction to global optimization. Springer, New York

    Google Scholar 

  18. Jeannet B, Miné A (2009) Apron: a library of numerical abstract domains for static analysis. International conference on computer aided verification. Springer, Berlin, Heidelberg, pp 661–667

    Google Scholar 

  19. Motzkin TS, Raiffa H, Thompson GL, Thrall RM (1953) The double description method. In: Kuhn HW, Tucker AW (eds) Contributions to theory of games, vol 2. Princeton University Press, Princeton

    Google Scholar 

  20. Perry J (2017) Exploring the dynamic Buchberger algorithm. In: Proceedings of the 2017 ACM on international symposium on symbolic and algebraic computation ACM, pp 365–372. https://doi.org/10.1145/3087604.3087643

  21. Schrijver A (1998) Theory of linear and integer programming. Wiley, New York

    Google Scholar 

  22. Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency, vol 24. Springer, New York

    Google Scholar 

  23. Terzer M (2009) Large scale methods to enumerate extreme rays and elementary modes. PhD thesis, ETH Zurich

  24. Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19):2229–2235

    Article  Google Scholar 

  25. Le H (1992) Verge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, Campus de Beaulieu, Rennes, France

  26. Wilde DK (2000) A library for doing polyhedral operations. Parallel Algorithms Appl 15(3–4):137–166

    MATH  Article  Google Scholar 

  27. Ziegler GM (2012) Lectures on polytopes, vol 152. Springer, New York

    Google Scholar 

  28. Zolotykh NYu (2012) New modification of the double description method for constructing the skeleton of a polyhedral cone. Comput Math Math Phys 52(1):146–156

    MathSciNet  MATH  Article  Google Scholar 

  29. Zolotykh NY, Kubarev VK, Lyalin SS (2018) Double description method over the field of algebraic numbers. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki 28(2):161–175

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation Grant No. 17-11-01336. The authors are grateful to the reviewers who pointed out inaccuracies in the original version of the paper and suggested a number of useful improvements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolai Yu. Zolotykh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Carlos Hoppen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolotykh, N.Y., Bastrakov, S.I. Two variations of graph test in double description method. Comp. Appl. Math. 38, 100 (2019). https://doi.org/10.1007/s40314-019-0862-0

Download citation

Keywords

  • Convex polyhedron
  • Polyhedral cone
  • Vertex enumeration
  • Facet enumeration
  • Convex hull
  • Double description method

Mathematics Subject Classification

  • 90-08
  • 52B55
  • 92-08