Advertisement

Computational and Applied Mathematics

, Volume 37, Issue 4, pp 5395–5409 | Cite as

Robust and non-fragile finite time \({H_\infty }\) synchronization control for complex networks with uncertain inner coupling

  • Nannan Ma
  • Zhibin Liu
  • Lin Chen
Article

Abstract

This paper addresses robust finite time \({H_\infty }\) synchronization problem for non-fragile complex networks with uncertain inner coupling. In order to achieve synchronization, a non-fragile controller subjected to randomly occurring perturbations will be considered. By constructing a suitable Lyapunov–Krasovskii functional and utilizing reciprocally convex approach, the criteria for the networks are established in terms of linear matrix inequalities (LMIs). Theoretical analysis and numerical simulations about robust finite time \({H_\infty }\) synchronization for uncertain inner coupling complex networks are presented.

Keywords

Complex network Finite time synchronization Uncertain Non-fragile \({H_\infty }\) control 

Mathematics Subject Classification

93C42 93C73 

Notes

Acknowledgements

This work was financially supported applied fundamental research (Major frontier projects) of Sichuan Province (No. 16JC0314). The authors would like to thank the editor and anonymous reviewers for their many helpful comments and suggestions to improve the quality of this paper.

References

  1. Almahbashi G, Noorani MSM, Bakar SA, Vahedi S (2016) Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance. Neurocomputing 207:645–652CrossRefGoogle Scholar
  2. Chang XH, Yang GH (2014) Non-fragile \({H_\infty }\) filter design for discrete-time fuzzy systems with multiplicative gain variations. Inf Sci 266:171–185MathSciNetCrossRefzbMATHGoogle Scholar
  3. Guan W, Liu FC (2016) Non-fragile fuzzy dissipative static output feedback control for Markovian jump systems subject to actuator saturation. Neurocomputing 193:123–132CrossRefGoogle Scholar
  4. Guo SX (2014) Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems. Syst Control Lett 64:27–35MathSciNetCrossRefzbMATHGoogle Scholar
  5. Hu H, Jiang B, Yang H (2013) Non-fragile \({H_2}\) reliable control for switched linear systems with actuator faults. Signal Process 93:1804–1812CrossRefGoogle Scholar
  6. Huang J, Han ZZ (2013) Adaptive non-fragile observer design for the uncertain Lur’e differential inclusion system. Appl Math Model 37:72–81MathSciNetCrossRefzbMATHGoogle Scholar
  7. Huang YQ, Sun CY, Qian CS, Wang L (2013) Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model. Chin J Aeronaut 26:948–959CrossRefGoogle Scholar
  8. Kaviarasan B, Sakthivel R, Lim Y (2016) Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory. Neurocomputing 186:127–138CrossRefGoogle Scholar
  9. Kim JH (2009) Delay-dependent robust and non-fragile guaranteed cost control for uncertain singular systems with time-varying state and input delays. Int J Control Autom Syst 7:57–364CrossRefGoogle Scholar
  10. Kwon O, Park J (2006) Exponential stability of uncertain dynamic systems including state delay. Appl Math Lett 19:901–907MathSciNetCrossRefzbMATHGoogle Scholar
  11. Li HL, Jiang YL, Wang ZL, Zhang L, Teng ZD (2015b) Parameter identification and adaptive-impulsive synchronization ofuncertain complex networks with nonidentical topological structures. Optik 126:5771–5776CrossRefGoogle Scholar
  12. Li Q, Shen B, Liang J, Shu H (2015a) Event-triggered synchronization control for complex networks with uncertain inner coupling. Int J Gen Syst 44:212–225MathSciNetCrossRefzbMATHGoogle Scholar
  13. Li YC, Yang XS, Shi L (2016a) Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing 185:242–253CrossRefGoogle Scholar
  14. Li DB, Wang ZC, Ma GF (2016b) Controlled synchronization for complex dynamical networks with random delayed information exchanges: a non-fragile approach. Neurocomputing 171:1047–1052CrossRefGoogle Scholar
  15. Liang S, Wu RC, Chen LP (2016) Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Phys A 444:49–62MathSciNetCrossRefGoogle Scholar
  16. Liu LP, Fua ZM, Cai XS, Song XN (2013) Non-fragile sliding mode control of discrete singular systems. Commun Nonlinear Sci Numer Simul 18:735–743MathSciNetCrossRefzbMATHGoogle Scholar
  17. Ma YC, Chen MH (2016) Finite time non-fragile dissipative control for uncertain TS fuzzy system with time-varying delay. Neurocomputing 177:509–514CrossRefGoogle Scholar
  18. Ma YC, Ma NN (2016) Finite-time \({H_\infty }\) synchronization for complex dynamical networks with mixed mode-dependent time delays. neurocomputing 218:223–233CrossRefGoogle Scholar
  19. Ma YC, Chen MH, Zhang QL (2016) Non-fragile static output feedback control for singular T-S fuzzy delay-dependent systems subject to Markovian jump and actuator saturation. J Frankl Inst 353:2373–2397MathSciNetCrossRefzbMATHGoogle Scholar
  20. Mathiyalagan K, Anbuvithya R, Sakthivel R, Park JH, Prakash P (2016) Non-fragile \({H_\infty }\) synchronization of memristor-based neural networksusing passivity theory. Neural Netw 74:85–100CrossRefGoogle Scholar
  21. Park MJ, Kwon OM, Park JH, Lee SM, Cha EJ (2014) Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation. J Frankl Inst 351:4850–4871MathSciNetCrossRefzbMATHGoogle Scholar
  22. Pastorsatorras R (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3CrossRefGoogle Scholar
  23. PastorSatorras R, Smith E, Sol RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210MathSciNetCrossRefGoogle Scholar
  24. Rakkiyappan R, Chandrasekar A, Petchiammal G (2014) Non-fragile robust synchronization for Markovian jumping chaotic neural networks of neutral-type with randomly occurring uncertainties and mode-dependent time-varying delays. ISA Trans 53:1760–1770CrossRefGoogle Scholar
  25. Shen B, Wang ZD, Ding DR, Shu HS (2013) \({H_\infty }\) state estimation for complex networks with uncertain inner coupling and incomplete measurements. IEEE Trans Neural Netw Learn Syst 24:2027–2037CrossRefGoogle Scholar
  26. Song J, He SP (2015) Finite-time robust passive control for a class of uncertain Lipschitz nonlinear systems with time-delays. Neurocomputing 159:275–281CrossRefGoogle Scholar
  27. Wang F, Sun Y (2008) Self-organizing peer-to-peer social networks. Comput Intell 24:213–233MathSciNetCrossRefGoogle Scholar
  28. Wang SG, Zheng S, Zhang BW, Cao HT (2016) Modified function projective lag synchronization of uncertaincomplex networks with time-varying coupling strength. Optik 127:4716–4725CrossRefGoogle Scholar
  29. Wu ZG, Park JH, Su H, Chu J (2013) Non-fragile synchronisation control for complex networks with missing data. Int J Control 86(3):555–566MathSciNetCrossRefzbMATHGoogle Scholar
  30. Wu ZG, Shi P, Su H, Chu J (2013) Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans Neural Netw Learn Syst 24(8):1177–1187CrossRefGoogle Scholar
  31. Xie L (1996) Output feedback \({H_\infty }\) control of systems with parameter uncertainty. Int J Control 163:741–750MathSciNetCrossRefzbMATHGoogle Scholar
  32. Xu YH, Zhou WN, Fang JA, Sun W (2011) Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions. Commun Nonlinear Sci Numer Simul 16:3337–3343MathSciNetCrossRefzbMATHGoogle Scholar
  33. Yang GH, Che WW (2008) Non-fragile H filter design for linear continuous-time systems. Automatica 44:2849–2856MathSciNetCrossRefzbMATHGoogle Scholar
  34. Ye Q, Cui B (2010) Mean square exponential and robust stability of stochastic discrete-time genetic regulartory networks with uncertainties. Cogn Neurodyn 4:165–176CrossRefGoogle Scholar
  35. Yu YJ, Dong HL, Wang ZD, Ren WJ, Alsaadi FE (2016) Design of non-fragile state estimators for discrete time-delayed neuralnetworks with parameter uncertainties. Neurocomputing 182:18–24CrossRefGoogle Scholar
  36. Zhang YQ, Shi Y, Shi P (2016) Robust and non-fragile finite-time \({H_\infty }\) control for uncertain Markovian jump nonlinear systems. Appl Math Comput 279:125–138MathSciNetGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  1. 1.School of ScienceSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations