Skip to main content
Log in

Chaos-based potentials in the one-dimensional tight-binding model probed by the inverse participation ratio

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Chaos-based potentials are defined and implemented in the one-dimensional tight-binding model as a way of simulating disorder-controlled crystalline lattices. In this setting, disorder is handled with the aid of the chaoticity parameter. The inverse participation ratio (IPR) probes the response of the system to three different such potentials and shows consistent agreement with results given by the Lyapunov exponent \(\mathrm{Ly}\): the greater \(\mathrm{Ly}(r)\) for the chaotic sequence as a function of the chaoticity parameter r, the greater the asymptotic value IPR(r) for the large-system ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To the best of the authors’ knowledge, this was first proposed by C. R. de Oliveira (personal communication, 2002).

References

  • Allouche J-P (1997) Schrödinger operators with Rudin–Shapiro potentials are not palindromic. J Math Phys 38(4):1843–1848

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1942–1958

    Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks-Cole, Pacific Grove

    MATH  Google Scholar 

  • Axel F, Gratias D (eds) (1995) Beyond quasicrystals. Les Editions de Physique and Springer-Verlag

  • Axel Françoise, Terauchi Hiraku (1991) High-resolution X-ray-diffraction spectra of Thue–Morse GaAs-AlAs heterostructures: towards a novel description of disorder. Phys Rev Lett 66(17):2223–2226

    Article  Google Scholar 

  • Bovier Anton, Ghez Jean-Michel (1995) Remarks on the spectral properties of tight-bindind and Kronig–Penney models with substitution sequences. J Phys A Math Gen 28:2313–2324

    Article  MATH  Google Scholar 

  • DiVincenzo DP, Steinhardt P (eds) (1991) Quasicrystals: the state of the art. World Scientific Publishing Co.,

  • Dulea Mihnea, Johansson Magnus, Riklund Rolf (1992a) Localization of electrons and electromagnetic waves in a deterministic aperiodic system. Phys Rev B 45(1):105–114

    Article  Google Scholar 

  • Dulea Mihnea, Johansson Magnus, Riklund Rolf (1992b) Trace-map invariant and zero-energy states of the tight-binding Rudin–Shapiro model. Phys Rev B 46(6):3296–3304

    Article  Google Scholar 

  • Dulea Mihnea, Johansson Magnus, Riklund Rolf (1993) Unusual scaling of the spectrum in a deterministic aperiodic tight-bindind model. Phys Rev B 47(14):8547–8551

    Article  Google Scholar 

  • Evers F, Mirlin AD (2000) Fluctuations of the inverse participation ratio at the Anderson transition. Phys Rev Lett 84(16):3690–3693

    Article  Google Scholar 

  • Gong L, Wang H, Cheng W, Zhao S (2015) A measurement of disorder in binary sequences. Phys A 422:66–72

    Article  Google Scholar 

  • Grebogi Celso, Ott Edward, Pelikan Steven, Yorke James A (1984) Strange attractors that are not chaotic. Phys D 13:261–268

    Article  MathSciNet  MATH  Google Scholar 

  • Heagy JF, Hammel SM (1994) The birth of strange nonchaotic attractors. Phys D 70:140–153

    Article  MathSciNet  MATH  Google Scholar 

  • Hilborn RC (2000) Chaos and nonlinear dynamics—an introduction for scientists and engineers. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Iochum B, Raymond L, Testard D (1992) Resistance of one-dimensional quasicrystals. Phys A 187:353–368

    Article  MathSciNet  Google Scholar 

  • Katsanos DE, Evangelou SN, Xiong SJ (1995) Quantum electron dynamics in periodic and aperiodic sequences. Phys Rev B 51(2):895–904

    Article  Google Scholar 

  • Kramer Bernhard, MacKinnon Angus (1993) Localization: theory and experiment. Rep Prog Phys 56:1469–1564

    Article  Google Scholar 

  • Luck JM (1989) Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys Rev B 39(9):5834–5849

    Article  Google Scholar 

  • Ludlam Jonathan J (2004) Localisation of the Vibrations of Amorphous Materials, Ph.D. thesis, Trinity College, Cambridge, UK

  • Merlin R, Bajema K, Clarke Roy, Juang F-Y, Bhattacharya PK (1985) Quasiperiodic GaAs-AlAs heterostructures. Phys Rev Lett 55(17):1768–1770

    Article  Google Scholar 

  • Mizoguchi Kohji, Matsutani Kei, Nakashima Shinichi, Dekorsy Thomas, Kurz Heinrich (1997) Observation of coherent acoustic phonons in Fibonacci superlattices. Phys Rev B 55(15):9336–9339

    Article  Google Scholar 

  • Monthus C, Garel T (2010) Anderson localization of phonons in dimension d = 1, 2, 3: Finite properties of the inverse participation ratios of eigenstates. Phys Rev B 81:224208-1–224208-9

    Google Scholar 

  • Murphy NC, Wortis R, Atkinson WA (2011) Generalized inverse participation ratio as a possible measure of localization for interacting systems. Phys Rev B 83:184206-1–184206-6

    Article  Google Scholar 

  • Oh GY, Lee MH (1993) Band-structural and Fourier-spectral properties of one-dimensional generalized Fibonacci lattices. Phys Rev B 48(17):12465–12477

    Article  Google Scholar 

  • Oliveira CR, Pellegrino GQ (1999) Quantum return probability for substitution potentials. J Phys A Math Gen 32:L285–L292

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira WF, Pellegrino GQ (2014) Characterization of spectrum and eigenvectors of the Schrödinger operator with chaotic potentials. Trends Appl Comput Math 15(2):203–209

    Google Scholar 

  • Pellegrino Giancarlo Queiroz (2001) Persistent current and Drude weight in one-dimensional rings with substitution potentials. J Phys Condens Matter 13:8121–8134

    Article  Google Scholar 

  • Piéchon Frédéric (1996) Anomalous diffusion properties of wave packets on quasiperiodic chains. Phys Rev Lett 76(23):4372–4375

    Article  Google Scholar 

  • Piéchon Frédéric, Benakli Mourad, Jagannathan Anuradha (1995) Analytical results for scaling properties of the spectrum of the Fibonacci chain. Phys Rev Lett 74(26):5248–5251

    Article  Google Scholar 

  • Prasad Awadhesh, Mehra Vishal, Ramaswamy Ramakrishna (1997) Intermittency route to strange nonchaotic attractors. Phys Rev Lett 79(21):4127–4130

    Article  Google Scholar 

  • Prasad Awadhesh, Negi Surendra Singh, Ramaswamy Ramakrishna (2001) Strange nonchaotic attractors. Int J Bifurcation Chaos 11(2):291–309

    Article  MathSciNet  MATH  Google Scholar 

  • Queffélec M (1987) Substitution dynamical systems—spectral analysis. Lecture Notes in Mathematics, vol. 1924, Springer-Verlag

  • Roche S, Mayou D (1997) Conductivity of quasiperiodic systems: a numerical study. Phys Rev Lett 79(13):2518–2521

    Article  Google Scholar 

  • Roy CL, Khan Arif (1994) Landauer resistance of Thue–Morse and Fibonacci lattices and some related issues. Phys Rev B 49(21):14979–14983

    Article  Google Scholar 

  • Roy CL, Khan Arif, Basu Chandan (1995) A study of Landauer resistance and related issues of the generalized Thue–Morse lattice. J Phys Condens Matter 7:1843–1853

    Article  Google Scholar 

  • Ryu CS, Oh GY, Lee MH (1992) Extended and critical wave functions in a Thue–Morse chain. Phys Rev B 46(9):5162–5168

    Article  Google Scholar 

  • Ryu CS, Oh GY, Lee MH (1993) Electronic properties of a tight-binding and a Kronig–Penney model of the Thue–Morse chain. Phys Rev B 48(1):132–141

    Article  Google Scholar 

  • Salejda Wlodzimierz, Szyszuk Pawel (1998) The Landauer conductance of generalised Fibonacci superlattices. Numerical results. Phys A 252:547–564

    Article  Google Scholar 

  • Steuer R, Molgedey L, Ebeling W, Jiménez-Montano MA (2001) Entropy and optimal partition for data analysis. Eur Phys J B 19:265–269

    Article  Google Scholar 

  • Todd J, Merlin R, Clarke Roy, Mohanty KM, Axe JD (1986) Synchrotron X-ray study of a Fibonacci Superlattice. Phys Rev Lett 57(9):1157–1160

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank sincerely Luciano Coutinho dos Santos and Luiz Argel Poveda Calvino for discussions on nonchaotic attractors. Also, the authors thank very much the anonymous Referees for their invaluable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Queiroz Pellegrino.

Additional information

Communicated by Jose Alberto Cuminato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W.F., Pellegrino, G.Q. Chaos-based potentials in the one-dimensional tight-binding model probed by the inverse participation ratio. Comp. Appl. Math. 37, 3995–4006 (2018). https://doi.org/10.1007/s40314-017-0561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0561-7

Keywords

Mathematics Subject Classification

Navigation