Skip to main content

Advertisement

Log in

Global properties and bifurcation analysis of an HIV-1 infection model with two target cells

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the authors consider a four-compartmental HIV epidemiological model, which describes the interaction between HIV virus and two target cells, CD4 T cells and macrophages in vivo. It is proved that the bilinear incidence can cause the backward bifurcation, where a locally asymptotically stable disease-free equilibrium co-exists with a locally asymptotically stable endemic equilibrium when the basic reproduction number \((R_{0})\) is less than unity. It is shown that a sequence of Hopf bifurcations occur at the endemic equilibrium by choosing one parameter of the model as the bifurcation parameter. Meanwhile, the global asymptotic stabilities of the equilibria are established by constructing suitable Lyapunov functions under some conditions. Furthermore, the authors develop an extended model by incorporating with the intracellular delays and derive global asymptotic stability of the delayed model by constructing Lyapunov functions. Some numerical simulations for justifying the theoretical analysis results are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams BM, Banks HT et al (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184:10–49

    Article  MathSciNet  MATH  Google Scholar 

  • Culshaw RV, Ruan S (2000) A delay-differential equation model of HIV infection of CD4+ T-cells. Math Biosci 165:27–39

    Article  MATH  Google Scholar 

  • Duffin RP, Tullis RH (2002) Mathematical models of the complete course of HIV infection and AIDS. J Theor Med 4:215–221

    Article  MATH  Google Scholar 

  • Elaiw AM (2010) Global properties of a class of HIV models. Nonlinear Anal Real World Appl 11:2253–2263

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Castillo-Chavez C et al (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57:235–247

    Article  MATH  Google Scholar 

  • Greenhalgh D (1997) Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. Math Comput Model 25:85–107

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Driessche PV (1997) Backward bifurcation in epidemic control. Math Biosci 146:15–35

    Article  MathSciNet  MATH  Google Scholar 

  • Hossein P, Sergei SP, Patrick DL (2014) Global analysis of within host virus models with cell-to-cell viral transmission. Discret Contin Dyn Syst Ser B 19:3341–3357

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Z, Liu X et al (2010) Analysis of the dynamics of a delayed HIV pathogenesis model. J Comput Appl Math 2:461–476

    Article  MathSciNet  MATH  Google Scholar 

  • Huang G, Takeuchi Y, Ma W (2010) Lyapunov functionals for delay differential equations model of viral infection. SIAM J Appl Math 70:2693–2708

    Article  MathSciNet  MATH  Google Scholar 

  • Kirschner D (1999) Dynamics of co-infection with M. tuberculosis and HIV-1. Theor Popul Biol 55:94–109

    Article  MATH  Google Scholar 

  • Korobeinikov A (2004) Global properties of basic virus dynamics models. Bull Math Biol 66:879–883

    Article  MathSciNet  MATH  Google Scholar 

  • Leenheer PD, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63:1313–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Yang Y, Zhou Y (2011) Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal Real World Appl 12:2163–2173

    Article  MathSciNet  MATH  Google Scholar 

  • Liu W (1994) Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl 182:250–256

    Article  MathSciNet  MATH  Google Scholar 

  • Lu T, Huang Y et al (2014) A refined parameter estimating approach for HIV dynamic model. J Appl Stat 41:1645–1657

    Article  MathSciNet  Google Scholar 

  • McCluskey CC (2010) Global stability fo ran SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal Real World Appl 11:3106–3109

    Article  MathSciNet  MATH  Google Scholar 

  • Ouattara DA (2005) Mathematical analysis of the HIV-1 infection: parameter estimation, therapies effectiveness, and therapeutical failures. In: 27th Annual international conference of the IEEE engineering in medicine and biology society, China, 9

  • Perelson AS, Essunger P et al (1997) Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387:188–191

    Article  Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Qesmi R, Wu J et al (2010) Influence of backward bifurcation in a model of hepatitis B and C viruses. Math Biosci 224:118–125

    Article  MathSciNet  MATH  Google Scholar 

  • Regoes RR, Wodarz D, Nowak MA (1998) Virus dynamics: the effect of target cell limitation and immune responses on virus evolution. J Theor Biol 191:340–351

    Article  Google Scholar 

  • Roy B, Roy SK (2015) Analysis of prey–predator three species models with vertebral and invertebral predators. Int J Dyn Control 3:306–312

    Article  MathSciNet  Google Scholar 

  • Roy SK, Roy B (2016) Analysis of prey–predator three species fishery model with harvesting including prey refuge and migration. Int J Bifurc Chaos 26(1650022):1–19

    MathSciNet  MATH  Google Scholar 

  • Roy B, Roy SK, Gurung DB (2017) Holling–Tanner model with Beddington–DeAngelis functional response and time delay introducing harvesting. Math Comput Simul 142:1–14

    Article  MathSciNet  Google Scholar 

  • Sharomi O, Podder CN et al (2007) Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math Biosci 210:436–463

    Article  MathSciNet  MATH  Google Scholar 

  • Shu H, Wang L, Watmough J (2013) Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses. SIAM J Appl Math 73:1280–1302

    Article  MathSciNet  MATH  Google Scholar 

  • Tsuyoshi K, Toru S Yasuhiro (2015) Construction of Lyapunov functions for some models of infectious diseases in vivo: from simple models to complex models. Math Biosci Eng 12:117–133

    MathSciNet  MATH  Google Scholar 

  • Wang X, Wang W (2012) An HIV infection model based on a vectored immunoprophylaxis experiment. J Theor Biol 313:127–135

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Zhou Y et al (2009) Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math Biosci 219:104–112

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Pang J, Kuniya T (2014) Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl Math Comput 241:298–316

    MathSciNet  MATH  Google Scholar 

  • Wodarz D, Lloyd AL et al (1999) Dynamics of macrophage and T cell infection by HIV. J Theor Biol 199:101–113

    Article  Google Scholar 

  • Xia X (2007) Modeling of HIV infection: vaccine readiness, drug effectiveness and therapeutical failures. J Process Control 17:253–260

    Article  Google Scholar 

  • Yuan Z, Ma Z, Tang X (2012) Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dyn 68:207–214

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348:433–443

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Liu.

Additional information

Communicated by Florence Hubert.

This work is supported partially by Scientific Research Staring Foundation, Henan Normal University (qd13045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X. Global properties and bifurcation analysis of an HIV-1 infection model with two target cells. Comp. Appl. Math. 37, 3455–3472 (2018). https://doi.org/10.1007/s40314-017-0523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0523-0

Keywords

Mathematics Subject Classification

Navigation