Skip to main content
Log in

Movement, competition and pattern formation in a two prey–one predator food chain model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The complexity of interactions among species remains a captivating phenomenon in the ecology. In this paper, a food chain model characterized by two prey and one predator is analyzed. Unlike previous approaches, our analysis incorporates the velocity of the animals movement into the system, as well as rivalries between prey. We establish a condition for the coexistence of all populations which underscores the importance of the animals’ velocities. Indeed, failing to consider the velocities increases the margin of error in the prediction process. We illustrate various patterns caused by the phenomenon of transport-driven instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler FR, Muller-Landau HC (2005) When do localized natural enemies increase species richness? Ecol Lett 8:438–447

    Article  Google Scholar 

  • Amarasekare P (2008) Spatial dynamics of foodwebs. Annu Rev Ecol Evol Syst 39:479–500

    Article  Google Scholar 

  • Ayala FJ (1969) Experimental invalidation of the principle of competitive exclusion. Nature 224:1076–1079

    Article  Google Scholar 

  • Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Brauer F, Nohel JA (1989) The qualitative theory of ordinary differential equations: an introduction. Dover, New York

    MATH  Google Scholar 

  • Chakrabortya A, Singha M, Lucya D, Ridland P (2007) Predator–prey model with prey-taxis and diffusion. Math Comput Mod 46:482–498

    Article  MathSciNet  Google Scholar 

  • Chase JM, Abrams PA, Grover JP, Diehl S, Chesson P, Holt RD, Richards SA, Nisbet RM, Case TJ (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  • Chesson P, Kuang JJ (2008) The interaction between predation and competition. Nature 456:235–238

    Article  Google Scholar 

  • Collins OC, Duffy KJ (2016) Consumption threshold used to investigate stability and ecological dominance in consumer-resource dynamics. Ecol Mod 319:155–162

    Article  Google Scholar 

  • Combes SA, Crall JD, Mukherjee S (2010) Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success. Biol Lett 6(3):426–429

    Article  Google Scholar 

  • Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332

    Article  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, pp 298–312

    Google Scholar 

  • Dale PD, Olsen L, Maini PK, Sherratt JA (1995) Travelling waves in wound healing. Forma 10:205–222

    MathSciNet  MATH  Google Scholar 

  • Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Popul Biol 46:363–394

    Article  MATH  Google Scholar 

  • Edelstein-Keshet LE, Watmough J, Grunbaum D (1998) Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J Math Biol 36:515–549

    Article  MathSciNet  MATH  Google Scholar 

  • Elettreby MF (2009) Two-prey one-predator model. Chaos Solitons Fractals 39:2018–2027

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman HI (1980) Deterministic mathematical models in population ecology. Marcel Dekker, New York

    MATH  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  MATH  Google Scholar 

  • Grover JP (1994) Assembly rules for communities of nutrient-limited plants and specialist herbivores. Am Nat 143:258–282

    Article  Google Scholar 

  • Grover JP (1997) Resource competition. Chapman and Hall, London

    Book  Google Scholar 

  • Gueron S, Liron N (1989) A model of herd grazing as a travelling wave, chemotaxis and stability. J Math Biol 27:595–608

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin G (1960) Competitive exclusion principle. Science 131:1292–1297

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Kara TK, Batabyal A (2010) Persistence and stability of a two prey one predator system. Int J Eng Sci Technol 2(2):174–190

    Google Scholar 

  • Keller EF, Segel LA (1971) Travelling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30:235–248

    Article  MATH  Google Scholar 

  • Kuang Y, Fagan WF, Loladze I (2003) Biodiversity, habitat area, resource growth rate and interference competition. Bull Math Biol 65(5):497–518

    Article  MATH  Google Scholar 

  • Landman KA, Cai AQ, Hughes BD (2007) Travelling waves of attached and detached cells in a wound-healing cell migration assay. Bull Math Biol 69:2119–2138

    Article  MathSciNet  MATH  Google Scholar 

  • Litchman E, Klausmeier CA (2001) Competition of phytoplankton under fluctuating light. Am Nat 157(2):170–187

    Article  Google Scholar 

  • Lui R, Wang ZA (2010) Travelling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol 61:739–761

    Article  MathSciNet  MATH  Google Scholar 

  • MacArthur R, Levins R (1964) Competition, habitat selection, and character displacement in a patchy environment. Proc Natl Acad Sci USA 51(6):1207–1210

    Article  Google Scholar 

  • Merchant SM, Nagata W (2011) Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor Popul Biol 80(4):289–297

    Article  MATH  Google Scholar 

  • Murrell DJ (2010) When does local spatial structure hinder competitive coexistence and reverse competitive hierarchies? Ecology 91:1605–1616

    Article  Google Scholar 

  • Perc M, Gómez-Gardenẽs J, Szolnoki A, Florá LM, Moreno Y (2013) Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface 10:20120997

    Article  Google Scholar 

  • Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448:1046–1049

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Ruan S, Ardito A, Ricciardi P, DeAngelis DL (2007) Coexistence in competition models with density-dependent mortality. C R Biol 330(12):845–854

    Article  Google Scholar 

  • Sedio BE, Annette M (2013) How specialised must natural enemies be to facilitate coexistence among plants? Ecol Lett 16:995–1003

    Article  Google Scholar 

  • Stump SM, Chesson P (2015) Distance-responsive predation is not necessary for the Janzen–Connell hypothesis. Theor Popul Biol 106:60–70

    Article  MATH  Google Scholar 

  • Sumpter DJ (2006) The principles of collective animal behaviour. Philos Trans R Soc Lond B 361(1465):5–22

    Article  Google Scholar 

  • Sunardi Asaeda T, Manatunge J, Fujino T (2007) The effects of predation risk and current velocity stress on growth, condition and swimming energetics of Japanese minnow ( Pseudorasbora parva). Ecol Res 22:32–40

    Article  Google Scholar 

  • Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M (2014) Cyclic dominance in evolutionary games: a review. J R Soc Interface 11:20140735

    Article  Google Scholar 

  • Tchepmo Djomegni PM (2016) Travelling wave solutions in chemotaxis: starvation. SpringerPlus 5:917

    Article  Google Scholar 

  • Tchepmo Djomegni PM, Duffy KJ (2016) Multi-dynamics of travelling bands and pattern formation in a predator–prey model with cubic growth. Adv Differ Equ 2016:265

    Article  MathSciNet  Google Scholar 

  • Tchepmo Djomegni PM, Govinder KS (2016) Generalized travelling wave solutions for hyperbolic chemotaxis PDEs. Appl Math Mod 40:5672–5688

    Article  MathSciNet  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution of plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Vance RR (1978) Predation and resource partitioning in one predator-two prey model communities. Am Nat 112:797–813

    Article  Google Scholar 

  • Vance RR (1984) Interference competition and the coexistence of two competitors on a single limiting resource. Ecology 65(5):1349–1357

    Article  Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  MATH  Google Scholar 

  • Webb CO, Peart DR (1999) Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology 80:2006–2017

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the editor of this manuscript, to Professor Peter Chesson and the reviewers, for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Tchepmo Djomegni.

Additional information

Communicated by Geraldo Diniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchepmo Djomegni, P.M., Govinder, K.S. & Doungmo Goufo, E.F. Movement, competition and pattern formation in a two prey–one predator food chain model. Comp. Appl. Math. 37, 2445–2459 (2018). https://doi.org/10.1007/s40314-017-0459-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0459-4

Keywords

Mathematics Subject Classification

Navigation