Skip to main content
Log in

Finite element solution of MHD power-law fluid with slip velocity effect and non-uniform heat source/sink

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The laminar steady boundary layer flow of an incompressible MHD Power-law fluid past a continuously moving surface is investigated numerically. The study involves the influence of surface slip and non-uniform heat source/sink on the flow and heat transfer. The governing boundary layer flow equations are transformed into non-dimensional, non-linear coupled ordinary differential equations with the help of suitable similarity transformations. The Galerkin finite element method is implemented to crack the resulting system. The impact of different involved physical parameters is exhibited on the dimensionless velocity profile, temperature distributions and rate of heat transfer in graphical and tabular forms for pseudoplastic and dilatant fluids. The local Nusselt number is found to be the decreasing function of slip parameter, temperature and space-dependent heat sink parameter whereas it increases with increasing values of temperature and space dependent heat source parameter. The problem has important application in attaining the sustainable heat transfer rate for the cooling of fluids, especially in heat exchangers used frequently in chemical industry, in order to increase the trustworthiness of a system, as it removes high heat loads from these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

Magnetic field strength \((\mathrm{N}\,\mathrm{m}\,\mathrm{A}^{-1})\)

\(C_\mathrm{p}\) :

Specific heat at constant pressure \((\mathrm{J}\,\mathrm{kg}^{-1}\,\mathrm{K}^{-1})\)

Ec :

Eckert number

f :

Dimensionless stream function

M :

Dimensionless magnetic field parameter

n :

Power-law index

\(Nu_\mathrm{x}\) :

Local Nusselt number

\(Nu^{*}\) :

Nusselt number using similarity transformation

Pr :

Prandtl number

q :

Rate of internal heat generation or absorption \((\mathrm{J}\,\mathrm{s}^{-1})\)

Q :

Space-dependent heat source/sink \((\mathrm{J})\)

\(Q^{*}\) :

Temperature-dependent heat source/sink \((\mathrm{J})\)

\(q_\mathrm{w}\) :

Wall heat flux \((\mathrm{J}\,\mathrm{s}^{-1})\, \text{ or }\, (\mathrm{W})\)

\(Re_\mathrm{x}\) :

Local Reynolds number

\(S_\mathrm{f}\) :

Stream function \((\mathrm{m}^{2}\,\mathrm{s}^{-1})\)

T :

Fluid temperature \((\mathrm{K})\)

(uv):

Velocity vector \((\mathrm{m}\,\mathrm{s}^{-1})\)

U :

Velocity of moving surface

\(w_{1},w_{2},w_{3}\) :

Test functions

\((x,\,y)\) :

Co-ordinate axes \((\mathrm{m})\)

\(\alpha \) :

Thermal diffusivity \((\mathrm{m}^{2}\,\mathrm{s}^{-1})\)

\(\beta \) :

Dimensionless temperature-dependent heat source/sink parameter

\(\eta \) :

Similarity variable

\(\lambda \) :

Dimensionless slip parameter \((\mathrm{m})\)

\(\lambda _\mathrm{l}\) :

Slip length \((\mathrm{m})\)

\(\kappa \) :

Thermal conductivity \((\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1})\)

\(\mu \) :

Coefficient of viscosity \((\mathrm{Pa}\,\mathrm{s})\)

\(\nu \) :

Kinematic viscosity \((\mathrm{m}^{2}\,\mathrm{s}^{-1})\)

\(\psi \) :

Shape function

\(\rho \) :

Density of the fluid (kg m\(^{-3}\))

\(\sigma \) :

Electrical conductivity \((\mathrm{A}^{2}\,\mathrm{s}^{3}\,\mathrm{kg}^{-1}\,\mathrm{m}^{-3})\)

\(\tau _{ij}\) :

Stress in ‘j’ direction on ‘i’ plane \((\mathrm{N}\,\mathrm{m}^{-2})\)

\(\theta \) :

Dimensionless temperature

w :

Conditions at the surface

\(\infty \) :

Conditions far away from the surface

\('\) :

Differentiation w.r.t. \(\eta \)

References

  • Abel MS, Mahesha N (2008) Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Model 32(10):1965–1983

    Article  MathSciNet  MATH  Google Scholar 

  • Abo-Eldahab EM, Aziz MAE (2004) Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int J Thermal Sci 43(7):709–719

    Article  Google Scholar 

  • Acrivos A, Shah JJ, Petersen EE (1960) Momentum and heat transfer in laminar boundary layer flow of non-Newtonian fluids past external surfaces. A.I.Ch.E. J. 16(2):312–317

  • Astarita G, Marrucci G (1974) Principles of non-Newtonian fluid mechanics. McGraw-Hill, New-York

    MATH  Google Scholar 

  • Astin J, Jones RS, Lockyer P (1973) Boundary layers in non-Newtonian fluids. J. de M\(\acute{e}\)c 12:527–539

  • Bird R, Stewart W, Lightfoot E (1960) Transport phenomena. John Wiley, New York

  • Chen C (1999) Forced convection over a continuous sheet with suction or injection moving in a flowing fluid. Acta Mechanica 138:1–11

    Article  MATH  Google Scholar 

  • Ece MC, Büyük E (2002) Similarity solutions for free convection to Power-law fluids from a heated vertical plate. Appl Math Lett 15(1):1–5

    Article  MathSciNet  MATH  Google Scholar 

  • Guedda M (2005) Similarity solutions of differential equations for boundary layer approximation in porous media. ZAMP J Appl Math Phys 56(5):749–762

    Article  MathSciNet  MATH  Google Scholar 

  • Guedda M, Hammouch Z (2008) Similarity flow solutions of a non-Newtonian Power-law fluid. Int J Nonlinear Sci 6(3):255–264

    MathSciNet  MATH  Google Scholar 

  • Hartman J (1937) Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Det Kgl. Danske Videnskabernes Selskab, Mathematisk-Fyiske Meddelelser, Copenhagen 15(6):1–28

  • Jacobi AM (1993) A scale analysis approach to tile correlation of continuous moving sheet (backward boundary layer) forced convective heat transfer. ASME J Heat Transf 115:1058–1061

    Article  Google Scholar 

  • Kumari M, Nath G (2001) MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream. Acta Mechanica 146(3–4):139–150

    Article  MATH  Google Scholar 

  • Mahmoud MA (2007) Variable viscosity effects on hydromagnetic boundary layer flow along a continuously moving vertical plate in the presence of radiation. Appl Math Sci 1(17):799–814

    MathSciNet  MATH  Google Scholar 

  • Mansutti D, Ramgopal K (1991) Flow of a shear thinning fluid between intersecting planes. Int J Non-Linear Mech 26(5):769–775

    Article  MATH  Google Scholar 

  • Martin M, Boyd I (2000) Blasius boundary layer solution with slip flow conditions. In: 22nd rarefied gas dynamics symposium, Sydney, Australia

  • Poonia M, Bhargava R (2014) Finite element study of Eyring–Powell fluid flow with convective boundary conditions. J Thermophys Heat Transf 28(3):499–506

    Article  Google Scholar 

  • Poonia M, Bhargava R (2014) Heat transfer of convective MHD viscoelastic fluid along a moving inclined plate with power-law surface temperature using Finite Element Method. Multidiscipl Model Mater Struct 10(1):106–121

    Article  Google Scholar 

  • Poonia M, Bhargava R (2015) Heat and mass transfer in unsteady third–grade fluid with variable suction using finite element method. Int J Comput Meth 12(6):1550

  • Rao IJ, Rajagopal KR (1999) The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica 135(3–4):113–126

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy J (1985) An introduction to the finite element method. McGraw-Hill, New York

  • Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Rat Mech Anal 4(2):323–425

    MathSciNet  MATH  Google Scholar 

  • Roux CL (1999) Existence and uniqueness of the flow of second–grade fluids with slip boundary conditions. Arch Rat Mech Anal 148(4):309–356

  • Sakiadis B (1961) Boundary layer behavior on continuous solid surface: II the boundary layer on a continuous flat surface. Am Inst Chem Eng J 7(2):221–225

    Article  Google Scholar 

  • Schlichting H (1968) Boundary layer theory. McGraw-Hill, New-York

    MATH  Google Scholar 

  • Soh CW (2005) Invariant solutions of the unidirectional flow of an electrically charged Power-law non-Newtonian fluid over a flat plate in presence of a transverse magnetic field. Commun Nonlinear Sci Numer Simul 10(5):537–548

    Article  MathSciNet  MATH  Google Scholar 

  • Soundalgekar V, Murty T (1980) Heat transfer in flow past a continuous moving plate with variable temperature. W\(\ddot{a}\)rme-und Stoff\(\ddot{u}\)bertragung 14:91–93

  • Taamneh Y, Omari R (2013) Slip-flow and heat transfer in a porous microchannel saturated with Power-law fluid. J Fluids 2013:1–9

    Article  Google Scholar 

  • Truesdell C, Noll W (1992) The non-linear field theories of mechanics. Springer, Berlin (1992)

  • Tsou F, Sparrow E, Goldstein R (1967) Flow and heat transfer in the boundary layer on a continuous moving surfaces. Int J Heat Mass Transf 10(2):219–235

    Article  Google Scholar 

  • Vajravelu K, Nayfeh L (1992) Hydromagnetic convection at a cone and a wedge. Int Commun Heat Mass Transf 19(5):701–710

    Article  Google Scholar 

  • Watanabe T, Pop I (1994) Thermal boundary layers in magnetohydrodynamic flow over a flat plate in the presence of a transverse magnetic field. Acta Mechanica 105(1–4):233–238

    Article  MATH  Google Scholar 

  • Wilkinson J (1960) Non-Newtonian fluids. Pergamon Press, Oxford

  • Yadav D, Agrawal G, Lee J (2013) Thermal instability in a nanofluid layer with vertical magnetic field. J Eng Math 80:147–164

    Article  MathSciNet  MATH  Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS (2012) Boundary and internal heat source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by Nanofluid. Int J Thermal Sci 60:244–254

    Article  Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS, Hwang GS, Lee J, Kim MC (2014) Magneto-convection in a rotating layer of nanofluid. Asia-Pacific J Chem Eng 9:663–677

    Article  Google Scholar 

  • Yadav D, Kim C, Lee J, Cho HH (2015) Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating. Comput Fluids 121:26–36

    Article  MathSciNet  Google Scholar 

  • Yadav D, Lee J (2015) The onset of MHD nanofluid convection with Hall current effect. Eur Phys J Plus 130:162–184

    Article  Google Scholar 

  • Yadav D, Lee J, Cho HH (2015) Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a Nanofluid. Powder Technol 286:592–601

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Minakshi Poonia) would like to thank Council of Scientific and Industrial Research (CSIR), Government of India, for its financial support through the award of a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Poonia.

Additional information

Communicated by Abimael Loula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonia, M., Bhargava, R. Finite element solution of MHD power-law fluid with slip velocity effect and non-uniform heat source/sink. Comp. Appl. Math. 37, 1737–1755 (2018). https://doi.org/10.1007/s40314-017-0421-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0421-5

Keywords

Mathematics Subject Classification

Navigation