Skip to main content
Log in

A new bi-objective periodic vehicle routing problem with maximization market share in an uncertain competitive environment

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new variant of periodic vehicle routing problem in which the reaching time to the customers affects market share. Thus, there is a competition between distributors to achieve more market share by reaching the customers earlier than others; moreover, travel time between each two pairs of customers is uncertain. This situation is called an uncertain competitive environment. For the given problem, a new bi-objective mathematical model including minimization of total traveled time and maximization of the market share is presented. In order to solve this model, a multi-objective particle swarm (MOPSO) and local MOPSO algorithms are applied; and to evaluate the algorithm performance, some samples are generated; and the results of algorithms are compared based on some comparison metrics. The results demonstrate that the proposed LMOPSO algorithm leads to a better performance compared to the MOPSO in most comparison metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://neo.lcc.uma.es/vrp/vrp-instances/periodic-vrp-with-time-windows/.

References

  • Ai TJ, Kachitvichyanukul V (2009) A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput Oper Res 36(5):1693–1702

    Article  MATH  Google Scholar 

  • Alegre J, Laguna M, Pacheco J (2007) Optimizing the periodic pick-up of raw materials for a manufacturer of auto parts. Eur J Oper Res 179(3):736–746

    Article  MATH  Google Scholar 

  • Alinaghian M, Ghazanfari M, Salamatbakhsh A, Norouzi N (2012) A new competitive approach on multi-objective periodic vehicle routing problem. Int J Appl Oper Res 1:33–41

    MATH  Google Scholar 

  • Beltrami EJ, Bodin LD (1974) Networks and vehicle routing for municipal waste collection. Networks 4(1):65–94

  • Bertsimas DJ (1992) A vehicle routing problem with stochastic demand. Oper Res 40(3):574–585

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Howell LH (1993) Further results on the probabilistic traveling salesman problem. Eur J Oper Res 65(1):68–95

    Article  MATH  Google Scholar 

  • Bérubé JF, Gendreau M, Potvin JY (2009) An exact \(\epsilon \)-constraint method for bi-objective combinatorial optimization problems: application to the traveling salesman problem with profits. Eur J Oper Res 194(1):39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Biesinger B, Hu B, Raidl G (2016) An integer L-shaped method for the generalized vehicle routing problem with stochastic demands. Electron Notes Discrete Math 52:245–252

    Article  MathSciNet  MATH  Google Scholar 

  • Blakeley F, Argüello B, Cao B, Hall W, Knolmajer J (2003) Optimizing periodic maintenance operations for Schindler Elevator Corporation. Interfaces 33(1):67–79

    Article  Google Scholar 

  • Campbell A, Wilson J (2013) Forty years of periodic vehicle routing. Networks 63(1):2–15

    Article  MathSciNet  MATH  Google Scholar 

  • Carter MW, Farvolden JM, Laporte G, Xu J (1996) Solving an integrated logistics problem arising in grocery distribution. INFOR: Inf Syst Oper Res 34(4):290–306

    MATH  Google Scholar 

  • Christofides N, Beasley JE (1984) The period routing problem. Networks 14(2):237–256

    Article  MATH  Google Scholar 

  • Claassen GDH, Hendriks TH (2007) An application of special ordered sets to a periodic milk collection problem. Eur J Oper Res 180(2):754–769

    Article  MATH  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evolut Comput 8(3):256–279

    Article  Google Scholar 

  • Coene S, Arnout A, Spieksma FC (2010) On a periodic vehicle routing problem. J Oper Res Soc 61(12):1719–1728

    Article  MATH  Google Scholar 

  • Cordeau JF, Laporte G, Mercier A (2001) A unified tabu search heuristic for vehicle routing problems with time windows. J Oper Res Soc 52(8):928–936

    Article  MATH  Google Scholar 

  • Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer US, pp 403–449

  • Dror M (1993) Modeling vehicle routing with uncertain demands as a stochastic program: properties of the corresponding solution. Eur J Oper Res 64(3):432–441

    Article  MATH  Google Scholar 

  • Eglese RW, Murdock H (1991) Routeing road sweepers in a rural area. J Oper Res Soc 42(4):281–288

    Article  Google Scholar 

  • Francis P, Smilowitz K, Tzur M (2006) The period vehicle routing problem with service choice. Transp Sci 40(4):439–454

    Article  Google Scholar 

  • Gao J (2009) Optimization of distribution routing problem based on travel time reliability. In: 2009 international conference on information management, innovation management and industrial engineering, vol 1, pp 19–22. IEEE

  • Gendreau M, Laporte G, Séguin R (1995) An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp Sci 29(2):143–155

    Article  MATH  Google Scholar 

  • Golden BL, Wasil EA (1987) OR practice-computerized vehicle routing in the soft drink industry. Oper Res 35(1):6–17

    Article  Google Scholar 

  • Hamdy M, Nguyen AT, Hensen JL (2016) A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy Build 121:57–71

    Article  Google Scholar 

  • Helbig M, Engelbrecht AP (2013) Performance measures for dynamic multi-objective optimisation algorithms. Inf Sci 250:61–81

    Article  MATH  Google Scholar 

  • Hemmelmayr VC, Doerner KF, Hartl RF (2009a) A variable neighborhood search heuristic for periodic routing problems. Eur J Oper Res 195(3):791–802

  • Hemmelmayr V, Doerner KF, Hartl RF, Savelsbergh MW (2009b) Delivery strategies for blood products supplies. OR Spectr 31(4):707–725

  • Hu X, Shi Y, Eberhart RC (2004) Recent advances in particle swarm. In: IEEE congress on evolutionary computation, vol 1, pp 90–97

  • Jaillet P (1988) A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper Res 36(6):929–936

    Article  MathSciNet  MATH  Google Scholar 

  • Jozefowiez N, Semet F, Talbi EG (2008) Multi-objective vehicle routing problems. Eur J Oper Res 189(2):293–309

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy JF, Eberhart RC (1995) Particle Swarm optimization. In: Proceedings of IEEE international conference of neural network, Perth

  • Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress, Vol 2, pp 1671–1676. IEEE

  • Kennedy J, Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Kenyon AS, Morton DP (2003) Stochastic vehicle routing with random travel times. Transp Sci 37(1):69–82

    Article  Google Scholar 

  • Lambert V, Laporte G, Louveaux F (1993) Designing collection routes through bank branches. Comput Oper Res 20(7):783–791

    Article  Google Scholar 

  • Laporte G, Louveaux F, Mercure H (1992) The vehicle routing problem with stochastic travel times. Transp Sci 26(3):161–170

    Article  MATH  Google Scholar 

  • Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: models and algorithm. Int J Prod Econ 125(1):137–145

    Article  Google Scholar 

  • Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Swarm intelligence symposium, 2003. SIS’03. Proceedings of the 2003 IEEE. IEEE, pp 26–33

  • Murata T, Itai R (2007) Local search in two-fold EMO algorithm to enhance solution similarity for multi-objective vehicle routing problems. In: International conference on evolutionary multi-criterion optimization. Springer, Berlin, Heidelberg, pp 201–215

  • Potvin JY, Kervahut T, Garcia BL, Rousseau JM (1996) The vehicle routing problem with time windows part I: tabu search. INFORMS J Comput 8(2):158–164

    Article  MATH  Google Scholar 

  • Russell R, Igo W (1979) An assignment routing problem. Networks 9(1):1–17

    Article  Google Scholar 

  • Sarasola B, Doerner KF, Schmid V, Alba E (2016) Variable neighborhood search for the stochastic and dynamic vehicle routing problem. Ann Oper Res 236(2):425–461

    Article  MathSciNet  MATH  Google Scholar 

  • Schott JR (1995) Fault Tolerant design using single and multicriteria genetic algorithm optimization (No. AFIT/CI/CIA-95-039). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH

  • Stewart WR, Golden BL (1983) Stochastic vehicle routing: a comprehensive approach. Eur J Oper Res 14(4):371–385

    Article  MATH  Google Scholar 

  • Tenahua A, Benitez EO, Esparza J (2016) Heuristic for multi-objective solution of the periodic vehicle routing problem. Res Comput Sci 109:9–17

    Google Scholar 

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, pp 292–301

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evolut Comput 8(2):173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alinaghian.

Additional information

Communicated by José Mario Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinaghian, M., Ghazanfari, M. & Hamedani, S.G. A new bi-objective periodic vehicle routing problem with maximization market share in an uncertain competitive environment. Comp. Appl. Math. 37, 1680–1702 (2018). https://doi.org/10.1007/s40314-016-0410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0410-0

Keywords

Mathematics Subject Classification

Navigation