Skip to main content
Log in

An exploration of pressure dynamics using differential equations defined on a fractal geometry

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Pressure tests have been used to understand the behavior of naturally fractured reservoirs (NFRs) by establishing parameters such as permeability, connectivity of fractures, system compressibility, fracture network parameters, and others associated with the physical properties of the reservoir. The complex fracture network of a NFR produces anomalous fluid flow, which is shown by the pressure behavior at the well. A plausible model to explain this behavior is to assume that it arises from a fractal fracture system. However, to estimate the parameters that define this fractal fracture system, fluid flow models based on the modification of Darcy’s law are used. On the other hand, in this work, a fractal structure with known fractal dimension: Sierpinski gasket (SG) is proposed. The objective of this work is to solve numerically the diffusion equation on SG, and establish a comparison with flow models used in the oil industry to investigate the fractality assumption. This study is focused on the qualitative behavior of the solution of the diffusion equation defined on a SG supported by the Kigami’s theory of differential equations on fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acuna JA, Erchaghi I, Yortsos YC (1995) Practical application of fractal pressure-transient analysis in naturally fractured reservoirs. Soc Petrol Eng J Form Eval 10(3):173–179

    Google Scholar 

  • Alexander S, Orbach R (1982) Density of states on fractals: fractons. J Phys Lett (Paris) 43:L625–L631

    Article  Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24:1796–1804

    Article  Google Scholar 

  • Beier RA (1994) Pressure transient model of a vertically fractured well in a fractal reservoir. Soc Petrol Eng J Form Eval 3:3–9

    Google Scholar 

  • Bourdet D, Ayoub JA, Pirard YM (1989) Use of pressure derivative in well test interpretation. Soc Petrol Eng J Form Eval. doi:10.2118/12777-PA

  • Camacho-Velázquez R, Fuentes-Cruz G, Vásquez-Cruz M (2008) Decline-curve analysis of fractured reservoirs with fractal geometry. Soc Petrol Eng J Reserv Eval Eng 11(3):606–619

    Google Scholar 

  • Chang J, Yortsos YC (1990) Pressure transient analysis of fractal reservoirs. Soc Petrol Eng J Form Eval 5(1):31–38

    Google Scholar 

  • Chatas AT (1966) Unsteady spherical flow in petroleum reservoirs. Soc Petrol Eng J 6(2):102–114

    Article  Google Scholar 

  • Cinco-Ley H, Samaniego-V F (1981) Transient pressure analysis: finite conductivity fracture case versus damaged fracture case. In: Proceedings of Soc Petrol Eng Annual Technical Conference and Exhibition. doi:10.2118/10179-MS

  • Cinco-Ley H, Samaniego-V F (1982) Pressure transient analysis for naturally fractured reservoirs. In: Proceedings of Soc Petrol Eng Annual Technical Conference and Exhibition. doi:10.2118/11026-MS

  • Dalrymple K, Strichartz RS, Vinson JP (1999) Fractal differential equations on the Sierpinski gasket. J Fourier Anal Appl 5(2):203–284

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2004) The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Springer, Berlin

    MATH  Google Scholar 

  • Doe TW (1991) Fractional Dimension Analysis of Constant-Pressure well Tests. The 66th Annual Technical Conference and Exhibition of Soc Petrol Eng. doi:10.2118/22702-MS

  • Flamenco-López F, Camacho-Velázquez R (2001) Fractal Transient Pressure Behavior of Naturally Fractured Reservoirs. In: Soc Petrol Eng Annual Technical Conference and Exhibition. doi:10.2118/71591-MS

  • Flamenco-López F, Camacho-Velázquez R (2003) Determination of fractal parameters of fracture networks using pressure-transient data. Soc Petrol Eng Reserv Eval Eng. doi:10.2118/82607-PA

  • Fukushima M, Shima T (1992) On a spectral analysis for the Sierpiński gasket. Potential Anal 1:1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbons M, Raj A, Strichartz RS (2001) The finite element method on the Sierpinski gasket. Constr Approx 17:561–588

    Article  MathSciNet  MATH  Google Scholar 

  • Hernández D, Núñez-López M, Velasco-Hernández JX (2013) Telegraphic double porosity models for head transient behavior in naturally fractured aquifers. Water Resour Res 49(7):4399–4408

    Article  Google Scholar 

  • Hosseinpour-Zonoozi N, Ilk D, Blasingame TA (2006) The pressure derivative revisited-improved formulations and applications. In: Soc Petrol Eng Annual Technical Conference and Exhibition. doi:10.2118/103204-MS

  • Khrennikov A, Oleschko K, de Jesus Correa López M (2016) Modeling fluid’s Dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks. Entropy. doi:10.3390/e18070249

  • Kigami J (1989) A harmonic calculus on the Sierpinski spaces. Jpn J Appl Math 6(2):259–290

    Article  MathSciNet  MATH  Google Scholar 

  • Kigami J (1993) Harmonic calculus on p.c.f. self-similar sets. Trans Am Math Soc 335(2):721–755

    MathSciNet  MATH  Google Scholar 

  • Kigami J (2001) Analysis on fractals. Cambridge Tracts in Mathematics, vol 143. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Kucuk F, Brigham W (1979) Transient flow in elliptical systems. Soc Petrol Eng J. doi:10.2118/7488-PA

  • Metzler R, Glöckle W, Nonnenmacher T (1994) Fractional model equation for anomalous diffusion. Phys A 211(1):13–24

    Article  Google Scholar 

  • Miller FG (1962) Theory of unsteady-state influx of water in linear reservoirs. J Inst Pet 48(467):365–379

    Google Scholar 

  • Nabor GW, Barham RH (1964) Linear Aquifer Behavior. J Pet Technol 16(5):561–563

    Article  Google Scholar 

  • O’Shaughnessy B, Procaccia I (1985) Diffusion on fractals. Phys Rev A 32(5):3073–3083

    Article  MathSciNet  Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus; theory and applications of differentiation and integration to arbitrary order. Academic Press, New York

    MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, New York

  • Raghavan R (2011) Fractional derivatives: application to transient flow. J Pet Sci Eng 80(1):7–13

    Article  MathSciNet  Google Scholar 

  • Shima T (1991) On eigenvalue problems for the random walks on the Sierpiński pre-gaskets. Jpn J Ind Appl Math 8(1):127–141

    Article  MATH  Google Scholar 

  • Strichartz RS (2006) Differential equation on fractals: a tutorial. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Van Everdingen AF, Hurst W (1949) The application of the Laplace transformation to flow problems in reservoir. Soc Petrol Eng J. doi:10.2118/949305-G

  • Warren J, Root P (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3(3):245–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Chaidez-Félix.

Additional information

Communicated by Eduardo Souza de Cursi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaidez-Félix, J.M., Velasco-Hernández, J.X. An exploration of pressure dynamics using differential equations defined on a fractal geometry. Comp. Appl. Math. 37, 1279–1293 (2018). https://doi.org/10.1007/s40314-016-0398-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0398-5

Keywords

Mathematics Subject Classification

Navigation