Skip to main content
Log in

Iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the paper we consider the one-level and two-level iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem based on the iteration of pressure with a factor of penalty parameter. Firstly, the \(\mathbf {H}^1\) and \(\mathbf {L}^2\) error estimates of numerical solutions of one-level iterative penalty finite element method are provided. Secondly, the stability and convergence of two-level iterative penalty finite element method are analyzed. Finally, some numerical results are provided to verify the effectiveness of the developed numerical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Adams RA (1975) Sobolev space. Academic Press, New York

    Google Scholar 

  • An R, Shi F (2015) Two-level iteration penalty methods for the incompressible flows. Appl Math Model 39:630–641

    Article  MathSciNet  Google Scholar 

  • Dai X (2007) Finite element approximation of the pure Neumann problem using the iterative penalty method. Appl Math Comput 186:1367–1373

    MATH  MathSciNet  Google Scholar 

  • Discacciati M (2008) Numerical approximation of a steady MHD problem. Springer, New York

  • Dong XJ, He YN, Zhang Y (2014) Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput Methods Appl Mech Eng 276:287–311

    Article  MathSciNet  Google Scholar 

  • Girault V, Lions JL (2001) Two-grid finite element scheme for the steady Navier–Stokes equations in polyhedra. Port Math 58:25–57

    MATH  MathSciNet  Google Scholar 

  • Girault V, Raviart PA (1986) Finite element approximation of Navier–Stokes equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gunzburger MD (1989) Iterated penalty methods for the Stokes and Navier–Stokes equations. Finite Elem Anal Fluids 1:1040–1045

    Google Scholar 

  • Gunzburger MD, Meir AJ, Peterson JS (1991) On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math Comput 56:523–563

    Article  MATH  MathSciNet  Google Scholar 

  • Gunzburger MD, Ladyzhenskaya OA, Peterson JS (2004) On the global unique solvabiity and initial boundary value problems for coupled modified Navier–Stokes and Maxwell equations. J Math Fluid Mech 6:462–482

    MATH  MathSciNet  Google Scholar 

  • Hasler U, Schneebeli A, Schözau D (2004) Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl Numer Math 51:19–45

    Article  MATH  MathSciNet  Google Scholar 

  • He YN (2003) Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J Numer Anal 41:1263–1285

    Article  MATH  MathSciNet  Google Scholar 

  • He YN (2004) A two-level finite element Galerkin method for the nonstationary Navier–Stokes equations I: spatial discretization. J Comput Math 22:21–32

    MATH  MathSciNet  Google Scholar 

  • He YN (2005) Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations. Math Comput 74:1201–1216

    Article  MATH  MathSciNet  Google Scholar 

  • He YN (2015) Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J Numer Anal 35:767–801

    Article  MATH  MathSciNet  Google Scholar 

  • Hecht F, Pironneau O, Hyaric A, Ohtsuka K (2015) FreeFem++, version 3.37, 2008. http://www.freefem.org. Accessed 11 May 2015

  • Hughes WF, Young FJ (1966) The electromagnetics of fluids. Wiley, NewYork

    Google Scholar 

  • Marion M, Xu JC (1995) Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J Numer Anal 32:1170–1184

    Article  MATH  MathSciNet  Google Scholar 

  • Moreau R (1990) Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht

  • Qiu HL, Mei LQ, Zhang YM (2014) Iterative penalty methods for the steady Navier–Stokes equations. Appl Math Comput 237:110–119

    MATH  MathSciNet  Google Scholar 

  • Schözau D (2004) Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer Math 96:771–800

    Article  MathSciNet  Google Scholar 

  • Sermane M, Temam R (1983) Some mathematical questions related to the MHD equations. Commun Pure Appl Math 36(5):635–664

  • Shen J (1995) On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J Numer Anal 32:386–403

    Article  MATH  MathSciNet  Google Scholar 

  • Tao ZZ, Zhang T (2015) Stability and convergence of two-level iterative methods for the stationary incompressible magnetohydrodynamics with different Reynolds numbers. J Math Anal Appl 428:627–652

    Article  MATH  MathSciNet  Google Scholar 

  • Xu JC (1996) Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J Numer Anal 33:1759–1777

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang T (2013) Two grid characteristic finite volume methods for nonlinear parabolic problem. J Comput Math 31:470–487

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang GD, He YN, Zhang Y (2014) Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics. Numer Methods Partial Differ Equ 30:1877–1901

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang T, Yang JH (2014) Two level finite volume method for the unsteady Navier–Stokes equations based on two local Gauss integrations. J Comput Appl Math 263:377–391

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang T, Yuan JY, Si ZY (2015a) Decoupled two grid finite element method for the time-dependent natural convection problem I: spatial discretization. Numer Methods Partial Differ Equ 31(6):2135–2168

  • Zhang T, Zhao X, Huang PZ (2015b) Decoupled two level finite element methods for the steady natural convection problem. Numer Algorithms 68(4):837–866

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jien Deng.

Additional information

Communicated by Jorge X. Velasco.

This work was supported by CAPES and CNPq, Brazil (No. 88881.068004/2014.01), the NSF of China (No. 11301157), the Doctor Fund of Henan Polytechnic University (B2012-098) and the Foundation of Distinguished Young Scientists of Henan Polytechnic University (J2015-05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Tao, Z. & Zhang, T. Iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem. Comp. Appl. Math. 36, 1637–1657 (2017). https://doi.org/10.1007/s40314-016-0323-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0323-y

Keywords

Mathematics Subject Classification

Navigation