Numerical methods and fuzzy parameters: an environmental impact assessment in aquatic systems

Abstract

This paper proposes to analyze the dispersion of pollutants in aquatic systems, solving the advection–diffusion equation using numerical methods and fuzzy sets. For solution, numerical approximations were adopted, based on the finite element method for the spatial discretization and Crank–Nicolson for the time variable. The parameters of the equation were modeled taking into account aspects of multiple varieties of natural phenomena, based on fuzzy sets. The two-dimensional model resulted in the value of pollutant dispersion taking into account the flow velocity, in situations of prevailing winds in the region of a reservoir of Sao Paulo. According to the results, it was observed that the integration of the numerical methods and the fuzzy parameters is a potential instrument for environmental process analysis. The rule-based systems allowed a better design of the local natural phenomena. The spread of the plumes of pollutants was well defined by the model and the simulated scenarios are in agreement, from a qualitative point of view, with the local reality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Angeline R, Petrele M Jr (2000) A model for the plankton system of the Broa reservoir, So Carlos, Brazil. Ecol Model 126:131–137

    Article  Google Scholar 

  2. Barco Escola Reservatorio de Salto Grande (2015) http://www.barcoescola.org.br

  3. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  4. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  5. Chong OAG, Diniz GL, Villatoro FR (2005) Dispersal of fish populations in dams: modelling and simulation. Ecol Model 186:290–298

    Article  Google Scholar 

  6. de Barros LC, Ferreira-Leite MB, Bassanezi RC (2003) The SI epidemiological models with a fuzzy transmission parameter. Comput Math Appl 45:1619–1628

    Article  MATH  MathSciNet  Google Scholar 

  7. Daniel TC, Sharpley AN, Lemunyon JL (1998) Agricultural phosphorus and eutrophication: a symposium overview. J Environ Qual 27:251–257

    Article  Google Scholar 

  8. Dautray R, Lions JL (2000) Mathematical analysis and numerical methods for science and technology, vol 3. In: Spectral theory and applications. Springer, New York

  9. Edelstein-Keshet L (2005) Mathematical models in biology, vol 46. In: Classics in applied mathematics. SIAM, Philadelphia

  10. Espindola ELG, Leite MA, Dornfeld CB (2004) Reservatório de Salto Grande (Americana, SP), RiMa, São Carlos

  11. Guitierrez-Estrada JC, Pulido-Calvo I, Bilton DT (2013) Consistency of fuzzy rules in an ecological context. Ecol Model 251:187–198

    Article  Google Scholar 

  12. Heredia OS, Cirelli AF (2007) Environmental risk of increasing phosphorus addition in reaction to soil sortion capacity. Geoderma 137:426–431

    Article  Google Scholar 

  13. Jafelice RSM, de Barros LC, Gomide F (2004) Fuzzy modeling in symptomatic HIV virus infected population. Bull Math Biol 66:1597–1620

    Article  MATH  MathSciNet  Google Scholar 

  14. Jafelice RSM, Bechara BFZ, de Barros LC, Bassanezi RC, Gomide F (2009) Cellular automata with fuzzy parameters in microscopic study of positive HIV individuals. Math Comput Model 50:32–44

    Article  MATH  Google Scholar 

  15. Jafelice RSM, de Almeida CG, Meyer JFCA, Vasconcelos HL (2011) Fuzzy parameters in a partial differential equation for population dispersal of leaf-cutting ants. Nonlinear Anal Real World Appl 12:3397–3412

    Article  MATH  MathSciNet  Google Scholar 

  16. Janssen JAEB, Krol MS, Schielen RMJ, Hoekstra AY, Kok JL (2010) Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models. Ecol Model 221:1245–1251

    Article  Google Scholar 

  17. Kardestuncer H, Norrie DH (1987) Finite element. McGraw-Hill, New York

    MATH  Google Scholar 

  18. Marchuck GI (1986) Mathematical models in environmental problems, vol 16. In: Studies in mathematics and its applications. North-Holland, Amsterdam

  19. McCully P (2001) Silenced rivers: the ecology and politics of large dams, enlarged and updated edn. Zed Books, London

  20. Meyer JFCA, Diniz GL (2007) Pollutant dispersion in wetland systems: mathematical modelling. Ecol Model 200:360–370

    Article  Google Scholar 

  21. Montovani C, Poletti ECC (2012) O Impacto Ambiental na Bacia do Ribeirão do Pinhal—Município de Limeira-SP. Biomatemática (UNICAMP) 22:105–116

    Google Scholar 

  22. Murray JD (1989) Mathematical biology. Springer, New York

    Book  MATH  Google Scholar 

  23. Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin

    MATH  Google Scholar 

  24. Ortega N, de Barros LC, Massad E (2003) Fuzzy gradual rules in epidemiology. Emerald 32:460–477

    MATH  Google Scholar 

  25. Pedrycz W, Gomide F (1998) An introduction to fuzzy sets. MIT Press, Cambridge

    MATH  Google Scholar 

  26. Poletti ECC (2009) Pollutant dispersion in reservoir’s systems: mathematical modelling using numerical simulation and fuzzy sets. Ph.D. Thesis, FEEC-UNICAMP, Campinas

  27. Poletti ECC, Meyer JFCA (2009) Estudo da Dispersão de Poluentes com Parâmetros Fuzzy. In: Congresso Nacional de Matemática Aplicada e Computacional, Cuiabá

  28. Soyupak AL, Mukhallalati D, Yemisen D, Bayar C, Yuteri C (1997) Evaluation of eutrophication control strategies for the Keban Dam reservoir. Ecol Model 97:99–110

    Article  Google Scholar 

  29. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–352

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elaine Cristina Catapani Poletti.

Additional information

Communicated by Geraldo Diniz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poletti, E.C.C., Meyer, J.F.d.C.A. Numerical methods and fuzzy parameters: an environmental impact assessment in aquatic systems. Comp. Appl. Math. 36, 1517–1528 (2017). https://doi.org/10.1007/s40314-015-0299-z

Download citation

Keywords

  • Environmental impact
  • Aquatic systems
  • Advection–diffusion equation
  • Numerical methods
  • Fuzzy parameters

Mathematics Subject Classification

  • 35N05