Skip to main content

Advertisement

Log in

Dynamics and bifurcations in a simple quasispecies model of tumorigenesis

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Cancer is a complex disease and thus is complicated to model. However, simple models that describe the main processes involved in tumoral dynamics, e.g., competition and mutation, can give us clues about cancer behavior, at least qualitatively, also allowing us to make predictions. Here, we analyze a simplified quasispecies mathematical model given by differential equations describing the time behavior of tumor cell populations with different levels of genomic instability. We find the equilibrium points, also characterizing their stability and bifurcations focusing on replication and mutation rates. We identify a transcritical bifurcation at increasing mutation rates of the tumor cells. Such a bifurcation involves a scenario with dominance of healthy cells and impairment of tumor populations. Finally, we characterize the transient times for this scenario, showing that a slight increase beyond the critical mutation rate may be enough to have a fast response towards the desired state (i.e., low tumor populations) by applying directed mutagenic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The codes used to obtain the results presented in this work are available upon request.

References

  • Anderson GR, Stoler DL, Brenner BM (2001) Cancer as an evolutionary consequence of a destabilized genome. Bioessays 23:103746

    Article  Google Scholar 

  • Benedikt B, Siebert R, Traulsen A (2014) Cancer initiation with epistatic interaction between driver and passenger mutations. J Theor Biol 358:52–60

    Article  Google Scholar 

  • Bielas JH, Loeb KR, Rubin BP, True LD et al (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci 103:18238–18242

    Article  Google Scholar 

  • Bjedov I, Tenaillon O, Gérard B, Souza V et al (2003) Stress-induced mutagenesis in bacteria. Science 300(14049):35

    Google Scholar 

  • Brumer Y, Michor F, Shakhnovich EI (2006) Genetic instability and the quasispecies model. J Theor Biol 241:216–222

    Article  MathSciNet  Google Scholar 

  • Bryan K, Leise T (2006) The \({\$}\)25,000,000,000 eigenvector. The linear algebra behind Google. SIAM Rev 48(3):569–581

    Article  MathSciNet  MATH  Google Scholar 

  • Bull JJ, Sanjuán R, Wilke CO (2007) Theory of lethal mutagenesis for viruses. J Virol 81:2930–2939

    Article  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumors. Trends Genet 15:M57–M61

    Article  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    Article  Google Scholar 

  • Cichutek K, Merget H, Norlay S, Linde R et al (1992) Development of a quasispecies of human immunodeficiency virus type 1 in vivo. Proc Natl Acad Sci 89:7365–7369

    Article  Google Scholar 

  • Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci 98:6895–6900

    Article  Google Scholar 

  • Domingo E, Biebricher CK, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, Georgetown

    Google Scholar 

  • Eigen M (1971) Selforganization of matter and evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural selforganization (Springer-Verlag New York). Naturwissenschaften 58:465–523

    Article  Google Scholar 

  • Feig DI, Loeb LA (1993) Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase \(\beta \). Biochemistry 32:4466–4473

    Article  Google Scholar 

  • Forney GD (1973) The Viterbi algorithm. Proc IEEE 61:268–278

    Article  MathSciNet  Google Scholar 

  • Hastings A (2004) Transients: the key long-term ecological understanding. Trends Ecol Evol 19:39–45

    Article  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  Google Scholar 

  • Jorba Á, Zou M (2004) A software package for the numerical integration of ODEs by means of high-order Taylor methods. http://www.maia.ub.es/angel/taylor/taylor.pdf

  • Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6(7):e1001005

    Article  Google Scholar 

  • Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61:3230–3239

    Google Scholar 

  • Lux T, Morales-Arias L, Sattarhoff C (2011) A Markov-switching multifractal approach to forecasting volatility. Kiel Working Paper, 1737

  • Marcus PI, Rodriguez LL, Sekellick MJ (1998) Interferon induction as a quasispecies marker of Vesicular stomatitis virus populations. J Virol 72(1):542–549

    Google Scholar 

  • Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  Google Scholar 

  • Nowak MA (1992) What is a quasispecies? Trends Ecol Evol 7:118–121

    Article  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:12514

    Article  Google Scholar 

  • Sardanyés J, Simó C, Martínez R, Solé RV, Elena SF (2014) Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Nat Sci Rep 4:4625

    Google Scholar 

  • Sergey B, Lawrence P (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 33:107–117

    Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:7035

    Article  Google Scholar 

  • Solé RV (2001) Phase transitions in unstable cancer cells populations. Eur Phys J B 35:117–123

    Article  Google Scholar 

  • Solé RV, Sardanyés J, Díez J, Mas A (2006) Information catastrophe in RNA viruses through replication thresholds. J Theor Biol 240:353–359

    Article  MathSciNet  Google Scholar 

  • Solé RV, Deisboeck TS (2004) An error catastrophe in cancer? J Theor Biol 228:47–54

    Article  Google Scholar 

  • Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z (2014) Cocoon-like self-degradable DNA nano clew for anticancer drug delivery. J Am Chem Soc 136:14722–14725

    Article  Google Scholar 

  • Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16:329–345

    Article  Google Scholar 

  • Usher MB (1971) Developments in the Leslie model in mathematical models in ecology. Blackwell Scientific Publications

  • Wylie CS, Shakhnovich EI (2012) Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation. PLoS Comput Biol 8(8):e1002609

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We want to thank Ricard V. Solé for helpful comments and suggestions. JTL has been partially supported by the Spanish MICIN/FEDER grant MTM2012-31714, by the Generalitat de Catalunya grant number 2014SGR-504, and by grant 14-41-00044 of RSF at the Lobachevsky University of Nizhny Novgorod. JS has been funded by the Fundación Botín.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Tomás Lázaro or Josep Sardanyés.

Additional information

Communicated by Maria do Rosario de Pinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, V., Lázaro, J.T. & Sardanyés, J. Dynamics and bifurcations in a simple quasispecies model of tumorigenesis. Comp. Appl. Math. 36, 415–431 (2017). https://doi.org/10.1007/s40314-015-0234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0234-3

Keywords

Mathematics Subject Classification

Navigation