Computational modelling of three-layered biosensor based on chemically modified electrode


This paper presents a mathematical model of a biosensor based on a chemically modified electrode. The model is solved numerically and results of the simulations are validated with analytical solutions for a specific set of parameter values. The mathematical model of the biosensor comprises three layers: an enzyme layer, a dialysis membrane and an outer diffusion layer. The dialysis membrane is merged with the diffusion layer in the mathematical model by introducing an effective diffusion coefficient. The main purpose of this work was to determine at which parameter values the three-layer model can be replaced with the two-layer model with desired accuracy. Additionally, a possibility to use the maximal gradient of the biosensor current density instead of the steady-state current density is investigated. Numerical experiments showed that using the maximal gradient of the output current density can be very attractive to improve biosensor sensitivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Alkire R, Kolb D, Lipkowski J, Ross P (2011) Chemically modified electrodes. Wiley-VCH, Weinheim

    Google Scholar 

  2. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state. In: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Clarendon Press, Oxford

  3. Ašeris V (2013) Computational modelling of biosensors utilizing intermediate substances. Phd, Vilnius University

  4. Ašeris V, Baronas R (2010) Using GRID computing to model biosensors acting in stirred and non-stirred solutions. In: Pereira CF, Sequeira A, Pereira JMC (eds) Proceedings of the 5th european conference on computational fluid dynamics (ECCOMAS CFD 2010), Lisbon, Portugal, pp 14–17

  5. Ašeris V, Baronas R, Kulys J (2012) Effect of diffusion limitations of the response of biosensors utilizing parallel substrates conversion. Proceedings of the 6th European congress on computational methods in applied sciences and engineering. Austria, Vienna, pp 1–10

    Google Scholar 

  6. Banica F (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester, UK

    Google Scholar 

  7. Baronas R, Kulys J (2008) Modelling amperometric biosensors based on chemically modified electrodes. Sensors 8(8):4800–4820

    Article  Google Scholar 

  8. Baronas R, Ivanauskas F, Kulys J (2010) Mathematical modeling of biosensors. In: Springer series on chemical sensors and biosesnsors, 1st edn. Springer, Dordrecht

  9. Britz D (2005) Digital simulation in electrochemistry. In: Lecture Notes in Physics. Springer Science & Business Media, Berlin

  10. Chang H, Wu C, Ding S, Lin I, Sun I (2005) Measurement of diffusion and partition coefficients of ferrocyanide in protein-immobilized membranes. Analytica Chimica Acta 532(2):209–214

    Article  Google Scholar 

  11. Cooper J, Cass A (2004) Biosensors: a practical approach. Practical Approach Series No 268, 2nd edn. Oxford University Press, Oxford

  12. Dabulyte-Bagdonavičiene J, Ivanauskas F, Razumas V (2011) The computational modelling of the kinetics of ascorbic acid palmitate hydrolysis by lipase considering diffusion. Cent Eur J Chem 9(4):712–719

    Google Scholar 

  13. Gough DA, Leypoldt JK (1979) Membrane-covered, rotated disk electrode. Anal Chem 51(3):439–444

    Article  Google Scholar 

  14. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  15. Marzocchia U, Revsbecha NP (2014) Electrophoretic sensitivity control applied on microscale NO\(_x^-\) biosensors with different membrane permeabilities. Sensor Actuat B-Chem 202(2014):307–313

  16. Murray RW (1980) Chemically modified electrodes. Acc Chem Res 117(1979):135–141

    Article  Google Scholar 

  17. Petrauskas K, Baronas R (2009) Computational modelling of biosensors with an outer perforated membrane. Nonlinear Anal Model Control 14(1):85–102

    MATH  Google Scholar 

  18. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, vol 29, 3rd edn. Cambridge University Press, New York

  19. Puida M, Ivanauskas F, Laurinavičius V (2010) Mathematical modeling of the action of biosensor possessing variable parameters. J Math Chem 47(1):191–200

    MathSciNet  Article  MATH  Google Scholar 

  20. Sadana A, Sadana N (2010) Handbook of biosensors and biosensor kinetics. Elsevier, Amsterdam

    Google Scholar 

  21. Samarskij AA (2001) The theory of difference schemes. Marcel Dekker, New York

    Google Scholar 

  22. Sanghavi B, Mobin S, Mathur P, Lahiri G, Srivastava A (2013) Biomimetic sensor for certain catecholamines employing a copper(II) complex and silver nanoparticles modified glassy carbon paste electrode. Biosens Bioelectron 39:124–132

    Article  Google Scholar 

  23. Scheller F, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  24. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Select Electr Rev 12(2):203–260

    Google Scholar 

  25. Šimelevičius D, Petrauskas K, Baronas R, Razumiene J (2014) Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor. Sensors 14(2):2578–2594

  26. Turner AP, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford Science Publications, Oxford University Press, Oxford

  27. Čenas N, Kulys J (1981) Biocatalytic oxidation of glucose on the conductive charge transfer complexes. Bioelectrochem Bioenerg 8(1):103–113

    Article  Google Scholar 

Download references


The authors of this work thank Professor Juozas Kulys and all the members of the Biomoda seminar in Vilnius University for their valuable remarks.

Author information



Corresponding author

Correspondence to Vytautas Ašeris.

Additional information

This research was funded by the European Social Fund under the Global Grant measure, project No. VP1-3.1- ŠMM-07-K-01-073/MTDS-110000-583.

Communicated by Maria do Rosario de Pinho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ašeris, V., Baronas, R. & Petrauskas, K. Computational modelling of three-layered biosensor based on chemically modified electrode. Comp. Appl. Math. 35, 405–421 (2016).

Download citation


  • Biosensor
  • Mathematical modelling
  • Effective diffusion coefficient
  • Finite difference scheme
  • Maximal gradient value