Skip to main content
Log in

A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Option pricing model and numerical method with transaction costs under jump-diffusion process of Merton is studied in this paper. Partial integro-differential equation satisfied by the option value is derived by delta-hedge method, which is a nonlinear Black–Scholes equation with an infinite integral, and it is difficult to obtain the analytic solution. Based on a nonstandard approximation of the second partial derivative, a double discretization strategy is introduced for the unbounded part of the spatial domain and a positivity-preserving numerical scheme is developed. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly, and after modifying it becomes consistent. The numerical results for European call option and digital call option are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. Political Economy 8:1637–659

    Google Scholar 

  • Merton RC (1973) Theory of rational option pricing. The Bell Journal of Economics and Management Science 4:141–183

    Article  MathSciNet  Google Scholar 

  • Andersen L, Andreasen J (2000) Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research 4:231C–262

    Article  Google Scholar 

  • Leland HE (1985) Option pricing and replication with transaction costs. Journal of Finance 40:1283–1301

    Article  Google Scholar 

  • Hoggard T, Whalley AE, Wilmott P (1994) Hedging option portfolios in the presence of transaction costs. Advanced Futures and Options Research 7:21–35

    Google Scholar 

  • Barles G, Soner HM (1998) Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance and Stochastics 2:369–397

    Article  MATH  MathSciNet  Google Scholar 

  • Jandačka M, Ševčovič D (2005) On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics 3:235–258

    Article  Google Scholar 

  • Merton RC (1976) Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3:125–144

    Article  MATH  Google Scholar 

  • Kou SG (2002) A jump-diffusion model for option pricing. Management Science 48:1086–1101

    Article  MATH  Google Scholar 

  • Hull J, White A (1987) The pricing of options with stochastic volatilities. The Journal of Finance 42:281–300

    Article  Google Scholar 

  • Heston S (1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6:327–343

    Article  Google Scholar 

  • Mariani MC, SenGupta I, Bezdek P (2012) Numerical solutions for option pricing models including transaction costs and stochastic volatility. Acta Applicandae Mathematica 118:203–220

    Article  MATH  MathSciNet  Google Scholar 

  • Avellaneda M, Levy Parás A (1995) Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance 2:73–88

    Article  Google Scholar 

  • Matache AM, Petersdorff T, Schwab C (2004) Fast deterministic pricing of options on Lévy driven assets. Mathematical Modelling and Numerical Analysis 38:37–71

    Article  MATH  Google Scholar 

  • Matache AM, Nitsche PA, Schwab C (2005) Wavelet Galerkin pricing of American options on Lévy driven assets. Quantitative Finance 5:403–424

    Article  MATH  MathSciNet  Google Scholar 

  • Matache AM, Schwab C, Wihler T (2005) Fast numerical solution of parabolic integro-differential equations with applications in finance. SIAM Journal on Scientific Computing 27:369–393

    Article  MATH  MathSciNet  Google Scholar 

  • Fang F, Oosterlee CW (2008) A novel pricing method for European options based on Fourier-cosine series expansions. SIAM Journal on Scientific Computing 31:826–848

    Article  MATH  MathSciNet  Google Scholar 

  • Benhamou E, Gobet E, Miri M (2009) Smart expansion and fast calibration for jump diffusions. Finance Stochostic 13:563–589

    Article  MATH  MathSciNet  Google Scholar 

  • Pagliarani S, Pascucci A, Riga C (2011) Adjoint expansions in local Lévy models. SSRN eLibrary.

  • Almendral A, Oosterlee CW (2005) Numerical valuation of options with jumps in the underlying. Applied Numerical Mathematics 53:1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Tavella D, Randall C (2000) Pricing Financial Instruments. Wiley, New York

    Google Scholar 

  • Salmi S, Toivanen J (2011) An iterative method for pricing American options under jump-diffusion models. Applied Numerical Mathematics 61:821–831

    Article  MATH  MathSciNet  Google Scholar 

  • Cont R, Voltchkova E (2005) A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis 43:1596–1626

    Article  MATH  MathSciNet  Google Scholar 

  • Toivanen J (2008) Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM Journal on Scientific Computing 30:1949–1970

    Article  MathSciNet  Google Scholar 

  • Toivanen J (2010) A high-order front-tracking finite difference method for pricing American options under jump-diffusion models. The Journal of Computational Finance 13:61–79

    MATH  MathSciNet  Google Scholar 

  • Sachs EW, Strauss AK (2008) Effcient solution of a partial integro-differential equation in finance. Applied Numerical Mathematics 58:1687–1703

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang K, Wang S (2008) Pricing options under jump diffusion processes with fitted finite volume method. Applied Mathematics and Computation 201:398–413

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang K, Wang S (2009) A computational scheme for options under jump diffusion processes. International Journal of Numerical Analysis and Modeling 6:110–123

    MATH  MathSciNet  Google Scholar 

  • Huang J, Cen Z, Le A (2012) A finite difference scheme for pricing american put options under Kou’s jump-diffusion model. Journal of Function Spaces and Applications. doi:10.1155/2013/651573

    Google Scholar 

  • Zhou S, Li W, Wei Y, Wen C (2012) A positivity-preserving numerical scheme for nonlinear option pricing models. Journal of Applied Mathematics. doi:10.1155/2012/205686

    MathSciNet  Google Scholar 

  • Chen-Charpentier BM, Kojouharov HV (2013) An unconditionally positivity preserving scheme for advection-diffusion reaction equations. Mathematical and Computer Modelling 57:2177–2185

    Article  MATH  MathSciNet  Google Scholar 

  • Averbuj C (2012) Nonlinear Integral-Differential evolution equation arising in option pricing, including transaction costs: A viscosity solutions approach. Revista Brasileira de Economia de Empresas 12:81–90

    Google Scholar 

  • Burchard H, Deleersnijder E, Meister A (2003) A high-order conservative Patankar-type discretization for stiff systems of productionCdestruction equations. Applied Numerical Mathematics 47:1C30.

  • Patankar SV (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Casabán MC, Company R, Jódar L, Romero JV (2012) Double discretization difference schemes for partial integro-differential option pricing jump diffusion models. Abstract and Applied Analysis. doi:10.1155/2012/120358

    MATH  Google Scholar 

  • Davis PJ, Rabinowitz P (1984) Method of numerical integration. Academic Press, New York

    Google Scholar 

  • Company R, Jódar L, Pintos JR (2009) A numerical method for European option pricing with transaction costs nonlinear equation. Mathematical and Computer Modelling 50:910–920

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank professor Dongyuan Jiang and classmates for several suggestions for the improvement of this paper. This work is supported by the Fundamental Research Funds for the Central Universities of China (2013XK03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Communicated by Natasa Krejic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Han, L., Li, W. et al. A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process. Comp. Appl. Math. 34, 881–900 (2015). https://doi.org/10.1007/s40314-014-0156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0156-5

Keywords

Mathematics Subject Classification

Navigation