Skip to main content
Log in

On the new variable shape parameter strategies for radial basis functions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

One of the most popular meshless methods is constructed by radial kernels as basis called radial basis function method. It has a unique feature which affects significantly on accuracy and stability of approximation: existence of a free parameter known as shape parameter that can be chosen constantly or variably. Several techniques for selecting a variable shape parameter have been presented in the older works. Our study focuses on investigating the deficiency of these techniques and we introduce two new alternative strategies called hybrid shape parameter and binary shape parameter strategies based on the advantages of older studies. The proposed approaches produce the more accurate results as shown in numerical results where they are compared with random shape parameter strategy for interpolating one-dimensional and two- dimensional functions as well as in approximating the solution of Poisson equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bozzini M, Lenarduzzi L, Schaback R (2002) Adaptive interpolation by scaled multiquadrics. Adv Comput Math 16:375–387

  • Buhmann MD (2004) Radial basis functions: theory and implementation. University of Gissen, Cambridge University Press, Cambridge

    Google Scholar 

  • Carlson RE, Foley TA (1991) The parameter \(R^2\) in multiquadric interpolation. Comput Math Appl 21:29–42

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng AH-D (2012) Multiquadric and its shape parameter-a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng Anal Bound Elem 36:220–239

    Article  MATH  MathSciNet  Google Scholar 

  • Fasshauer GE (2002) Newton iteration with multiquadratics for the solution of nonlinear PDEs. Comput Math Appl 43:423–438

    Article  MATH  MathSciNet  Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with Matlab. In: Interdisciplinary mathematical sciences, vol 6. World Scientific Publishers, Singapore

  • Fasshauer GE (2011) Positive definite kernels: past, present and future. Dolomites Res Notes Approx 4:21–63

    Article  Google Scholar 

  • Franke R (1979) A critical comparison of some methods for interpolation of scattered data. PhD thesis, Naval Postgraduate School Monterey: California

  • Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38:181–200

    MATH  MathSciNet  Google Scholar 

  • Gan M, Peng H, Peng X, Chen X, Inoussa G (2010) A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling. Inform Sci 180:4370–4383

    Article  MathSciNet  Google Scholar 

  • Golbabai A, Safdari-Vaighani A (2010) A meshless method for numerical solution of the coupled Schrödinger-KdV equations. Computing 92:225–242

    Article  MathSciNet  Google Scholar 

  • Golbabai A, Rabiei H (2012a) Hybrid shape parameter strategy for the RBF approximation of vibrating systems. Int J Comput Math 89:2410–2427

    Article  MATH  MathSciNet  Google Scholar 

  • Golbabai A, Rabiei H (2012b) A meshfree method based on radial basis functions for the eigenvalues of transient Stokes equations. Eng Anal Bound Elem 36:1555–1559

    Article  MathSciNet  Google Scholar 

  • Golbabai A, Ahmadian D, Milev M (2012a) Radial basis functions with application to finance: American put option under jump diffusion. Math Comput Model 55:1354–1362

    Article  MATH  MathSciNet  Google Scholar 

  • Golbabai A, Mohebianfar E, Rabiei H (2012b) On the role of shape parameter in approximating the Eigenvalues of fredholm integral equations: an RBF-Simpson approach. App Math Inf Sci, In Press

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  • Hon YC, Schaback R (2001) On unsymmetric collocation by radial basis function. Appl Math Comput 119:177–186

    Article  MATH  MathSciNet  Google Scholar 

  • Huang CS, Lee CF, Cheng AD (2007) Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng Anal Bound Elem 31:614–623

    Article  MATH  Google Scholar 

  • Kansa EJ (1990a) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics-I Surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MATH  MathSciNet  Google Scholar 

  • Kansa EJ (1990b) Multiquadrics–a scattered data approximation scheme with applications to computational fluid dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MATH  MathSciNet  Google Scholar 

  • Kansa EJ, Carlson RE (1992) Improved accuracy of multiquadric interpolation using variable shape parameters. Comput Math Appl 24:99–120

    Article  MATH  MathSciNet  Google Scholar 

  • Kansa EJ, Hon YC (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39:123–137

    Article  MATH  MathSciNet  Google Scholar 

  • Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950

    Article  MATH  MathSciNet  Google Scholar 

  • Luh LT (2012) The shape parameter in the Gaussian function. Comput Math Appl 63:687–694

    Article  MATH  MathSciNet  Google Scholar 

  • Madych WR (1992) Miscellaneous error-bounds for multiquadric and related interpolators. Comput Math Appl 12:121–138

    Article  MathSciNet  Google Scholar 

  • Pindoriya NM, Singh SN, Sing SK (2008) An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Trans Power Syst 23:1423–1432

    Article  Google Scholar 

  • Ravi V, Kurniawan H, Thai PNK, Kumar PR (2008) Soft computing system for bank performance prediction. Appl Soft Comput 8:305–315

    Article  Google Scholar 

  • Rippa S (1999) An algorithm for selecting a good parameter c in radial bais function interpolation. Adv Comput Math 11:193–210

    Article  MATH  MathSciNet  Google Scholar 

  • Sarra SA, Kansa EJ (2010) Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Tech Science Press, Duluth, GA, USA

  • Sarra SA, Sturgill D (2009) A random variable shape parameter strategy for radial basis function approximation methods. Eng Anal Bound Elem 33:1239–1245

    Article  MATH  MathSciNet  Google Scholar 

  • Schaback R (1999) Improved error bounds for scattered data interpolation by radial basis functions. Math Comput 68:201–206

    Article  MATH  MathSciNet  Google Scholar 

  • Sturgill D (2009) Variable shape parameter strategies in radial basis function methods. M. Sc. Thesis, Marshall University, Huntington

  • Uhlir K, Skala V (2006) Radial basis function use for the restoration of damaged images. Comput Imaging Vis 32:839–844

    Article  Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Xiang S, Wang K, Ai Y, Sha Y, Shi H (2012) Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation. Appl Math Model 36:1931–1938

    Article  MATH  MathSciNet  Google Scholar 

  • Yang F, Paindavoine M (2003) Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification. IEEE Trans Neural Networks 14:1162–1175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Golbabai.

Additional information

Communicated by Antonio José Silva Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golbabai, A., Mohebianfar, E. & Rabiei, H. On the new variable shape parameter strategies for radial basis functions. Comp. Appl. Math. 34, 691–704 (2015). https://doi.org/10.1007/s40314-014-0132-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0132-0

Keywords

Mathematics Subject Classification

Navigation