Effects of couple stresses on entropy generation rate in a porous channel with convective heating


This paper investigates the effect of couple stresses on the entropy generation rate of an incompressible viscous fluid through a porous channel with convective heating at the walls. Semi-analytical solutions of the dimensionless momentum and energy equations are obtained using the rapidly convergent modified Adomian decomposition method. The approximate solutions are used to compute the entropy generation numbers, irreversibility distribution ratio and the Bejan number in the flow field. The effects of various flow parameters on the velocity and temperature are discussed and shown graphically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. Adesanya SO, Makinde OD (2013) Entropy generation in couple stress fluid flow through porous channel with fluid slippage. Int J Exergy (in press)

  2. Adesanya SO, Makinde OD (2012) Heat transfer to magnetohydrodynamic non-Newtonian couple stress pulsatile flow between two parallel porous plates. Z Naturforsch 67a:647–656

    Google Scholar 

  3. Adesanya SO, Ayeni RO (2011) Existence and uniqueness result for couple stress bio-fluid flow model via Adomian decomposition method. Int J Nonlinear Sci 12:16–24

    MATH  MathSciNet  Google Scholar 

  4. Adesanya SO (2012) Steady magnetohydrodynamics visco-elastic heat generating/absorbing slip flow with thermal radiation through a porous medium. Int J Heat Technol 30:69–74

    Google Scholar 

  5. Aziz A, Makinde OD (2010) Analysis of entropy generation and thermal stability in a slab. J Thermophys Heat Transfer 24:438–444

    Article  Google Scholar 

  6. Chen S, Zheng C (2010) Entropy generation in impinging flow confined by planar opposing jets. Int J Therm Sci 49:2067–2075

    Article  Google Scholar 

  7. Chen S, Liu Z, Liu J, Li J, Wang L, Zheng C (2010) Analysis of entropy generation in hydrogenenriched ultra-lean counter-flow methane-air non-premixed combustion. Int J Hydrogen Energy 35:12491–12501

    Article  Google Scholar 

  8. Chen S, Du R (2011) Entropy generation of turbulent double-diffusive natural convection in a rectangle cavity. Energy 36:1721–1734

    Article  Google Scholar 

  9. Eldabe NTM, Hassan A A, Mohamed MAA (2003) Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Z Naturforsch 58a:204–210

    Google Scholar 

  10. Makinde OD, Osalusi E (2006) Entropy generation in a liquid film falling along an incline d porous heated plate. Mech Res Commun 33:692–698

    Article  MATH  Google Scholar 

  11. Makinde OD (2008) Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature. Appl Energy 85:384–393

    Article  Google Scholar 

  12. Makinde OD (2008) Irreversibility analysis of variable viscosity channel flow with convective cooling at the walls. Can J Phys 86:383–389

    Article  Google Scholar 

  13. Makinde OD (2010) Thermodynamic second law analysis for a gravity-driven variable viscosity liquid film along an inclined heated plate with convective cooling. J Mech Sci Technol 24(4):899–908

    Article  Google Scholar 

  14. Makinde OD (2011) Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating. Entropy 13:1446–1464

    Article  MATH  Google Scholar 

  15. Makinde OD, Eegunjobi AS (2013) Effects of convective heating on entropy generation rate in a channel with permeable walls. Entropy 15:220–233

    Article  MathSciNet  Google Scholar 

  16. Makinde OD, Maserumule RL (2008) Thermal criticality and entropy analysis for a variable viscosity Couette flow. Phys Scr 78(015402):6

    Google Scholar 

  17. Srinivasacharya D, Srinivasacharyulu ND, Odelu O (2010) Flow of couple stress fluid between two parallel porous plates. IAENG Int J Appl Math 41: 41

    Google Scholar 

  18. Srinivasacharya D, Srikanth D (2008) Effect of couple stresses on the pulsatile flow through a constricted annulus C. R Mecanique 336:820–827

    Article  MATH  Google Scholar 

  19. Srinivasacharya D, Kaladhar K (2012) Mixed convection flow of couple stress fluid between parallel vertical plates with Hall and Ion-slip effects. Commun Nonlinear Sci Numer Simulat 17:2447–2462

    Article  MATH  MathSciNet  Google Scholar 

  20. Wazwaz AM (2000) A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 111:53–69

    Article  MATH  MathSciNet  Google Scholar 

  21. Wazwaz AM, El-Sayed A (2001) New modification of Adomian decomposition method for linear and non-linear operators. Appl Math Comput 122:393–405

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Samuel O. Adesanya.

Additional information

Communicated by Oleg M. Alifanov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adesanya, S.O., Makinde, O.D. Effects of couple stresses on entropy generation rate in a porous channel with convective heating. Comp. Appl. Math. 34, 293–307 (2015). https://doi.org/10.1007/s40314-014-0117-z

Download citation


  • Couple stresses
  • Entropy generation
  • Convective heating
  • Porous channel
  • mADM

Mathematics Subject Classification

  • 76D05
  • 35Q30