Skip to main content
Log in

Optimal control of time-varying linear delay systems based on the Bezier curves

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, time-delay control systems with quadratic performance are solved by applying the least square method on the Bezier control points. The approximation process is done in two steps. First, the time interval is divided into \(2k\) subintervals, then in each subinterval the trajectory and control functions are approximated by the Bezier curves. We have chosen the Bezier curves as piecewise polynomials of degree \(n\) and determined the Bezier curves on any subinterval by \(n+1\) control points. By considering a least square optimization problem, the control points can be found, then the Bezier curves that approximate the action of control and trajectory can be computed as well. Some numerical examples are given to verify the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Basin M, Perez J (2007) An optimal regulator for linear systems with multiple state and input delays. Opti Control Appl Methods 28:45–57

    Article  MathSciNet  Google Scholar 

  • Basin M, Rodriguez-Gonzalez J (2006) Optimal control for linear systems with multiple time delays in control input. IEEE Trans Autom Control 51(1):91–97

    Article  MathSciNet  Google Scholar 

  • Beltran JV, Monterde J (2004) Bezier solutions of the wave equation. Lect Notes Comput Sci 2:631–640

    Article  MathSciNet  Google Scholar 

  • Cholewa R, Nowak AJ, Bialecki RA, Wrobel LC (2002) Cubic Bezier splines for BEM heat transfer analysis of the 2-D continuous casting problems. Comput Mech 28:282–290

    Article  MATH  Google Scholar 

  • Chu CH, Wang CCL, Tsai CR (2008) Computer aided geometric design of strip using developable Bezier patches. Comput Ind 59(6):601–611

    Article  Google Scholar 

  • Eller DH, Aggarwal JI (1969) Optimal control of linear time-delay systems. IEEE Trans Autom Control 14(14):678–687

    Article  MathSciNet  Google Scholar 

  • Evrenosoglu M, Somali S (2008) Least squares methods for solving singularity perturbed two-points boundary value problems using Bezier control point. Appl Math Lett 21(10):1029–1032

    Article  MathSciNet  MATH  Google Scholar 

  • Farin GE (1988) Curve and surfaces for computer aided geometric design, 1st edn. Academic Press, New York

    Google Scholar 

  • Gachpazan M (2011) Solving of time varying quadratic optimal control problems by using Bezier control points. Comput Appl Math 30(2):367–379

    Article  MathSciNet  MATH  Google Scholar 

  • Ghomanjani F, Farahi MH (2012) The Bezier control points method for solving delay differential equation. Intell Control Autom 3(2):188–196

    Article  Google Scholar 

  • Gollman L, Kern D, Maurer H (2009) Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optim Control Appl Methods J 30(4):341–365. doi:10.1002/oca.843

  • Harada K, Nakamae E (1982) Application of the Bezier curve to data interpolation, computer-aided design. Int J Comput Math 14(1):55–59

    Google Scholar 

  • Heinkenschloss M (2005) A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems. Appl Math Comput 173:169–198

    Article  MathSciNet  MATH  Google Scholar 

  • Juddu H (2002) Spectral method for constrained linear-quaratic optimal control. Math Comput Simul 58:159–169

    Article  Google Scholar 

  • Kharatishdi GL (1961) The maximum principle in the theory of optimal processes with time lags. Doll Akad 136:39–43

    Google Scholar 

  • Krasovskii NN (1962) Analytic constructions of an optimal regulator in a system with time lags. Prickl Mat Mech (USSR) 26(1):50–67

    Google Scholar 

  • Krasovskii NN (1963) Optimal processes in systems with time lags. In: 2nd IFAC Conference, Basel, Switzerland

  • Lang B (2004) The synthesis of wave forms using Bezier curves with control point modulation. In: The Second CEMS Research Student Conference, 1st edn. Morgan kaufamann, San Francisco

  • LaSalle JP (1960) The time optimal control problem, contributions to the Theory of nonlinear Oscillations. Princeton University Press, Princeton, vol 5, pp 1–24

  • Layton AT, Van de Panne M (2002) A numerically evident and stable algorithm for animating water waves. Vis Comput 18:41–53

    Article  MATH  Google Scholar 

  • Loxton R, Teo KL, Rehbock V (2010) An optimization approach to state-delay identification. IEEE Trans Autom Control 55(9):2113–2119

    Article  MathSciNet  Google Scholar 

  • Marzban HR, Razzaghi M (2004) Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. J Frankl Inst 341:279–293

    Article  MathSciNet  MATH  Google Scholar 

  • N\(\ddot{u}\)rnberger G, Zeilfelder F (2000) Developments in bivariate spline interpolation, Journal of Computational and Applied Mathematics. Comput Math Appl 121(1–2): 125–152

    Google Scholar 

  • Oguztoreli MN (1963) A time optimal control problem for systems described by differential difference equations. SIAM J Control 1(3):290–310

    MathSciNet  Google Scholar 

  • Palanisamy KR, Rao GP (1983) Optimal control of linear systems with delays in state and control via Walsh functions. IEEE Proc 130(6):300–312

    Article  MATH  Google Scholar 

  • Ross DW (1968) Optimal control of systems described by differential difference equations. PhD dissertiation, Dept of Elec. Enery, Stanford University, Stanford

  • Rudin W (1986) Principles of mathematical analysis. McGraw-Hill, New York

  • Shi YQ, Sun H (2000) Image and video compression for multimedia engineering. CRC press, Boca Raton

  • Sohrab HH (2003) Basic real analysis. Birkhauser, Boston

  • Wang XT (2007) Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions. J Frankl Inst 344:941–953

    Article  MATH  Google Scholar 

  • Winkel R (2001) Generalized Bernstein polynomials and Bezier curves: an application of umbral calculus to computer aided geometric design. Adv Appl Math 27(1):51–81

    Article  MathSciNet  MATH  Google Scholar 

  • Wu C, Teo KL, Li R, Zhao Y (2006) Optimal control of switched systems with time delay. Appl Math Lett 19:1062–1067

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng J, Sederberg TW, Johnson RW (2004) Least squares methods for solving differential equations using Bezier control points. Appl Numer Math 48:237–252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gachpazan.

Additional information

Communicated by Marko Rojas-Medar.

Appendix

Appendix

In this section, we specify the derivative of Bezier curve.

By (6), we have

$$\begin{aligned} v_j(t)=\sum _{i=0}^n a_{i}^j B_{i,n}(t),\,t\in [0,1], \end{aligned}$$

where \(B_{i,n}(t)=\frac{n!}{i!(n-i)!}t^i(1-t)^{n-i}\).

Now, we have

$$\begin{aligned} \frac{\mathrm{d}B_{i,n}(t)}{\mathrm{d}t}=n(B_{i-1,n-1}(t)-B_{i,n-1}(t)), \end{aligned}$$
(24)

where \(B_{-1,n-1}(t)=B_{n,n-1}(t)=0\), and

$$\begin{aligned} B_{i-1,n-1}(t)&= \frac{(n-1)!}{(i-1)!(n-i)!}t^{i-1}(1-t)^{n-i},\\ B_{i,n-1}(t)&= \frac{(n-1)!}{i!(n-i-1)!}t^i(1-t)^{n-i-1}. \end{aligned}$$

Using (24), the first derivative \(\mathbf{v}_j(t)\) is shown as

$$\begin{aligned} \frac{\mathrm{d}\mathbf{v}_{j}(t)}{\mathrm{d}t}&= \sum _{i=1}^{n-1}n\mathbf{a}_i^jB_{i-1,n-1}(t)-\sum _{i=0}^{n-1}n\mathbf{a}_i^jB_{i,n-1}(t)\nonumber \\&= \sum _{i=0}^{n-1}n\mathbf{a}_{i+1}^jB_{i,n-1}(t)-\sum _{i=0}^{n-1}n\mathbf{a}_i^jB_{i,n-1}(t)\nonumber \\&= \sum _{i=0}^{n-1}B_{i,n-1}(t)n\{\mathbf{a}_{i+1}^j-\mathbf{a}_{i}^j\}. \end{aligned}$$
(25)

Now, we specify the procedure of derivation (9) from (8).

By (6), we have

$$\begin{aligned} \mathbf{v}_j(t)&= \begin{array}{l}n\\ 0\end{array}\mathbf{a}_0^j\frac{1}{h^n}(t_j-t)^n\nonumber \\&+\ldots +\begin{array}{l}n\\ n\end{array} \mathbf{a}_n^j\frac{1}{h^n}(t-t_{j-1})^n,\end{aligned}$$
(26)
$$\begin{aligned} \mathbf{v}_{j+1}(t)&= \begin{array}{l}n\\ 0\end{array}\mathbf{a}_0^{j+1}\frac{1}{h^n}(t_{j+1}-t)^n\nonumber \\&+\ldots +\begin{array}{l}n\\ n\end{array} \mathbf{a}_n^{j+1}\frac{1}{h^n}(t-t_j)^n, \end{aligned}$$
(27)

by substituting \(t=t_j\) into (26) and (27), one has

$$\begin{aligned} \mathbf{v}_j(t_j)&= \mathbf{a}_n^j \frac{1}{h^n} (t_j-t_{j-1})^n, \end{aligned}$$
(28)
$$\begin{aligned} \mathbf{v}_{j+1}(t_j)&= \mathbf{a}_0^{j+1}\frac{1}{h^n}(t_{j+1}-t_j)^n. \end{aligned}$$
(29)

To preserve the continuity of Bezier curves at the nodes, one needs to impose the condition \(\mathbf{v}_j(t_j)=\mathbf{v}_{j+1}(t_j)\), so from (28) and (29), we have

$$\begin{aligned}&\mathbf{a}_n^j (t_j-t_{j-1})^n=\mathbf{a}_0^{j+1}(t_{j+1}-t_j)^n. \end{aligned}$$
(30)

From (25), the first derivatives of \(\mathbf{v}_j(t)\) and \(\mathbf{v}_{j+1}(t)\) are, respectively:

$$\begin{aligned} \frac{\mathrm{d}\mathbf{v}_j(t)}{\mathrm{d}t}&= \sum _{i=0}^{n-1}B_{i,n-1}(t){n(\mathbf{a}_{i+1}^j-\mathbf{a}_i^j)}\nonumber \\&= \sum _{i=0}^{n-1}\left( \begin{array}{c}n-1\\ i\end{array}\right) (t_j-t)^{n-1-i}(t-t_{j-1})^i\nonumber \\&\times \frac{1}{h^n}\{n(\mathbf{a}_{i+1}^j-\mathbf{a}_i^j)\}\nonumber \\&= \left( \begin{array}{c}n-1\\ 0\end{array}\right) \{n(\mathbf{a}_1^j-\mathbf{a}_0^j)\}\frac{1}{h^n}(t_j-t)^{n-1}\nonumber \\&+\ldots +\left( \begin{array}{c}n-1\\ n-1\end{array}\right) \{n(\mathbf{a}_n^j-\mathbf{a}_{n-1}^j)\}\nonumber \\&\times \frac{1}{h^n}(t-t_{j-1})^{n-1}, \end{aligned}$$
(31)
$$\begin{aligned} \frac{d\mathbf{v}_{j+1}(t)}{dt}&= \sum _{i=0}^{n-1}\left( \begin{array}{c}n-1\\ i\end{array}\right) (t_{j+1}-t)^{n-1-i}(t-t_{j})^i\nonumber \\&\times \frac{1}{h^n}\{n(\mathbf{a}_{i+1}^{j+1}-\mathbf{a}_i^{j+1})\}\nonumber \\&= \left( \begin{array}{c}n-1\\ 0\end{array}\right) \{n(\mathbf{a}_1^{j+1}-\mathbf{a}_0^{j+1})\}\frac{1}{h^n}(t_{j+1}-t)^{n-1}\nonumber \\&+\ldots +\left( \begin{array}{c}n-1\\ n-1\end{array}\right) \{n(\mathbf{a}_n^{j+1}-\mathbf{a}_{n-1}^{j+1})\}\nonumber \\&\times \frac{1}{h^n}(t-t_{j})^{n-1}. \end{aligned}$$
(32)

By substituting \(t=t_j\) into (31) and (32), we have

$$\begin{aligned} \frac{\mathrm{d}\mathbf{v}_j(t_j)}{\mathrm{d}t}&= {n(\mathbf{a}_n^j-\mathbf{a}_{n-1}^j)} \frac{1}{h^n} (t_j-t_{j-1})^{n-1}, \end{aligned}$$
(33)
$$\begin{aligned} \frac{\mathrm{d}\mathbf{v}_{j+1}(t_j)}{\mathrm{d}t}&= {n(\mathbf{a}_1^{j+1}-\mathbf{a}_{0}^{j+1})}\frac{1}{h^n}(t_{j+1}-t_j)^{n-1}, \end{aligned}$$
(34)

and to preserve the continuity of the first derivative of the Bezier curves at nodes, by equalizing (33) and (34), we have

$$\begin{aligned}&(\mathbf{a}_n^{j}-\mathbf{a}_{n-1}^{j}) (t_j-t_{j-1})^{n-1}=(\mathbf{a}_1^{j+1}-\mathbf{a}_{0}^{j+1})(t_{j+1}-t_j)^{n-1}, \end{aligned}$$

where it shows the equality (9).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghomanjani, F., Farahi, M.H. & Gachpazan, M. Optimal control of time-varying linear delay systems based on the Bezier curves. Comp. Appl. Math. 33, 687–715 (2014). https://doi.org/10.1007/s40314-013-0089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-013-0089-4

Keywords

Mathematics Subject Classification (2000)

Navigation