Abstract
In this article, numerical solution of differential-algebraic equations (DAEs), by means of the sinc-collocation method is considered. Properties of the sinc procedure are utilized to reduce the computation of the DAEs to systems of algebraic equations. It is well known that the sinc procedure converges to the solution at an exponential rate. To show the validity and efficiency of the present method, some examples are presented. The method is easy to implement and the results show that this method is very efficient, and can be applied to a large class of problems.
Similar content being viewed by others
References
Ascher UM, Lin P (1996) Sequential regularization methods for higher index differential-algebraic equations with constraint singularities: the linear index-2 case. SIAM J Numer Anal 33:1921–1940
Ascher UM, Petzold LR (1991) Projected implicit Runge-Kutta methods for differential-algebraic equations. SIAM J Numer Anal 28:1097–1120
Ascher UM, Petzold LR (1993) Stability of computational methods for constrained dynamical systems. SIAM J Sci Comput 14:95–120
Babolian E, Hosseini MM (2003) Reducing index, and pseudospectral methods for differential-algebraic equations. Appl Math Comput 140:77–90
Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems in differential algebraic equations. Elsevier, New York
Dehghan M, Saadatmandi A (2007) The numerical solution of a nonlinear system of second-order boundary value problems using Sinc-collocation method. Math Comput Model 46:1434–1441
Gear CW, Petzold LR (1984) ODE methods for the solution of differential-algebraic systems. SIAM J Numer Anal 21:716–728
Hosseini MM (2005) An index reduction method for linear Hessenberg systems. J Comput Appl Math 171:596–603
Hosseini MM (2006) Adomian decomposition method for solution of differential algebraic equations. J Comput Appl Math 197:495–501
Koonprasert S, Bowers KL (2004) Block matrix sinc-galerkin solution of the wind-driven current problem. Appl Math Comput 155:607–635
Lund J, Bowers KL (1992) Sinc methods for quadrature and differential equations. SIAM, Philadelphia
Mohsen A, El-Gamel M (2010) On the numerical solution of linear and nonlinear volterra integral and integro-differential equations. Appl Math Comput 217:3330–3337
Parand K, Dehghan M, Pirkhedri A (2009) Sinc-collocation method for solving the Blasius equation. Phys Lett A 373:4060–4065
Revelli R, Ridolfi L (2003) Sinc collocation-interpolation method for the simulation of nonlinear waves. Comput Appl Math. 46:1443–1453
Saadatmandi A (2012) Numerical study of Second Painlevé equation. Commun Numer Anal 2012. Article ID cna-00157, 16 pages.
Saadatmandi A, Dehghan M (2012) The use of Sinc-collocation method for solving multi-point boundary value problems. Commun Nonlinear Sci Numer Simulat 17:593–601
Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations. Commun Nonlinear Sci Numer Simulat 17:4125–4136
Saadatmandi A, Razzaghi M, Dehghan M (2005) Sinc-collocation methods for the solution of Hallen’s integral equation. J Electromagn Wave Appl 19:245–256
Saadatmandi A, Razzaghi M, Dehghan M (2005) Sinc-galerkin solution for nonlinear two-point boundary value problems with applications to chemical reactor theory. Math Comput Model 42:1237–1244
Saadatmandi A, Razzaghi M (2007) The numerical solution of third-order boundary value problems using Sinc-collocation method. Commun numer method eng 23:681–689
Soltanian F, Dehghan M, Karbassi SM (2010) Solution of the differential-algebraic equations via homotopy perturbation method and their engineering applications. Int J Comput Math 87:1950–1974
Soltanian F, Karbassi SM, Hosseini MM (2009) Application of He’s variational iteration method for solution of differential-algebraic equations. Chaos Soliton Fract 41:436–445
Stenger F (1993) Numerical methods based on sinc and analytic functions. Springer, New York
Stenger F, Cook T, Kirby RM (2004) Sinc solution of biharmonic problems. Canad Appl Math Q 12:371–414
Acknowledgments
A. Saadatmandi would like to acknowledge the University of Kashan for support of this research by a grant (No. 159026).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Antonio Silva Neto.
Rights and permissions
About this article
Cite this article
Yeganeh, S., Saadatmandi, A., Soltanian, F. et al. The numerical solution of differential-algebraic equations by sinc-collocation method. Comp. Appl. Math. 32, 343–354 (2013). https://doi.org/10.1007/s40314-013-0024-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40314-013-0024-8