Skip to main content
Log in

Design of Adaptive Cruise Control with Control Barrier Function and Model-Free Control

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work describes the design of an adaptive cruise control (ACC) applied to a realistic automotive simulation model, considering both upper- and lower-level controllers. The upper-level controller provides a desired acceleration/deceleration to a host vehicle to maintain a safe distance related to a leader vehicle or to track a desired cruise speed otherwise. On the other hand, the lower-level controller provides control signals to the throttle and brake pedals of the host vehicle aiming to track the desired acceleration/deceleration setpoint from the upper-level controller. For the upper-level controller, we consider a control framework that unifies the stability/tracking objective, expressed as a control Lyapunov function (CLF), the safety constraint, expressed as a control barrier function (CBF), and the comfort constraint, by means of a quadratic programming (QP), where safety must be prioritized. The lower-level controller is implemented considering a model-free control. The results, obtained by numerical simulations, demonstrate that the safe distance between the vehicles is ensured and the desired cruise speed is tracked adequately. Therefore, the stability/tracking objective and the safety and comfort constraints, related to the upper-level controller, are properly satisfied. The lower-level controller tracks the desired acceleration/deceleration demanded by the upper-level controller with good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., & Tabuada, P. (2019). Control barrier functions: Theory and applications. In 2019 18th European control conference (ECC) (pp. 3420–3431).

  • Ames, A. D., Galloway, K., Sreenath, K., & Grizzle, J. W. (2014). Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Transactions on Automatic Control, 59(4), 876–891.

    Article  MathSciNet  MATH  Google Scholar 

  • Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014b). Control barrier function based quadratic programs with application to adaptive cruise control. In 53rd IEEE conference on decision and control (CDC) (pp. 6271–6278).

  • Ames, A. D., Xu, X., Grizzle, J. W., & Tabuada, P. (2017). Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8), 3861–3876.

    Article  MathSciNet  MATH  Google Scholar 

  • Bembli, S., Haddad, N. K., & Belghith, S. (2021). A robust model free terminal sliding mode with gravity compensation control of a 2 dof exoskeleton-upper limb system. Journal of Control, Automation and Electrical Systems, 32, 632–641.

    Article  Google Scholar 

  • Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Brugnolli, M. M., Pereira, B. S., Angélico, B. A., & Laganà, A. A. M. (2019). Adaptive cruise control with a customized electronic control unit. Journal of Control, Automation and Electrical Systems, 30, 9–15.

    Article  Google Scholar 

  • Corona, D., & De Schutter, B. (2008). Adaptive cruise control for a SMART car: A comparison benchmark for MPC-PWA control methods. IEEE Transactions on Control Systems Technology, 16(2), 365–372.

    Article  Google Scholar 

  • Fancher, P., Bareket, Z., & Ervin, R. (2000). Human-centered design of an ACC-with-braking and forward-crash-warning system. In 5th International symposium on advanced vehicle control (AVEC).

  • Fliess, M. & Join, C. (2008). Intelligent PID controllers. In 2008 16th Mediterranean Conference on control and automation (MED) (pp. 326–331).

  • Fliess, M. & Join, C. (2009). Model-free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control? In 15th IFAC symposium on system identification (SYSID) (pp. 1531–1550).

  • Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228–2252.

    Article  MathSciNet  MATH  Google Scholar 

  • Freeman, R. A., & Kokotovic, P. V. (1996). Inverse optimality in robust stabilization. SIAM Journal on Control and Optimization, 34(4), 1365–1391.

    Article  MathSciNet  MATH  Google Scholar 

  • Ganji, B., Kouzani, A. Z., Khoo, S. Y., & Shams-Zahraei, M. (2014). Adaptive cruise control of a HEV using sliding mode control. Expert Systems with Applications, 41(2), 607–615.

    Article  Google Scholar 

  • Gillespie, T. D. (1992). Fundamentals of vehicle dynamics. Pittsburgh: Society of Automotive Engineers Inc.

    Book  Google Scholar 

  • Goodrich, M. A., & Boer, E. R. (2003). Model-based human-centered task automation: A case study in ACC system design. IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans, 33(3), 325–335.

    Article  Google Scholar 

  • Gurriet, T., Singletary, A., Reher, J., Ciarletta, L., Feron, E., & Ames, A. D. (2018). Towards a framework for realizable safety critical control through active set invariance. In 2018 ACM/IEEE 9th international conference on cyber-physical systems (ICCPS) (pp. 98–106).

  • Han, D. H., Yi, K. S., Lee, J. K., Kim, B. S., & Yi, S. (2006). Design and evaluation of intelligent vehicle cruise control systems using a vehicle simulator. International Journal of Automotive Technology, 7(3), 377–383.

    Google Scholar 

  • Hidayatullah, M. H., & Juang, J. (2021). Adaptive cruise control with gain scheduling technique under varying vehicle mass. IEEE Access, 9(1), 144241–144256.

    Article  Google Scholar 

  • Hildreth, C. (1957). A quadratic programming procedure. Naval Research Logistics Quarterly, 4(1), 79–85.

    Article  MathSciNet  Google Scholar 

  • Hu, C. & Wang, J. (2021). Trust-based and individualizable adaptive cruise control using control barrier function approach with prescribed performance. IEEE Transactions on Intelligent Transportation Systems, 1–11.

  • Ioannou, P. A., & Chien, C. C. (1993). Autonomous intelligent cruise control. IEEE Transactions on Vehicular Technology, 42(4), 657–672.

    Article  Google Scholar 

  • Kim, H. & Yi, K. (2013). Combined throttle and brake control for vehicle cruise control: A model free approach. In 2013 IEEE intelligent vehicles symposium (IV) (pp. 859–864).

  • Li, S., Li, K., Rajamani, R., & Wang, J. (2011). Model predictive multi-objective vehicular adaptive cruise control. IEEE Transactions on Control Systems Technology, 19(3), 556–566.

    Article  Google Scholar 

  • Li, S. E., Guo, Q., Xu, S., Duan, J., Li, S., Li, C., & Su, K. (2017). Performance enhanced predictive control for adaptive cruise control system considering road elevation information. IEEE Transactions on Intelligent Vehicles, 2(3), 150–160.

    Article  Google Scholar 

  • Lin, Y., McPhee, J., & Azad, N. L. (2021). Comparison of deep reinforcement learning and model predictive control for adaptive cruise control. IEEE Transactions on intelligent Vehicles, 6(2), 221–231.

    Article  Google Scholar 

  • Lin, Y., Nguyen, H. T., & Wang, C. (2017). Adaptive neuro-fuzzy predictive control for design of adaptive cruise control system. In 2017 IEEE 14th international conference on networking, sensing and control (ICNSC) (pp. 767–772).

  • Magdici, S., & Althoff, M. (2017). Adaptive cruise control with safety guarantees for autonomous vehicles. IFAC-PapersOnLine, 50(1), 5774–5781.

    Article  Google Scholar 

  • MathWorks. (2021). MATLAB and Simulink racing lounge: Vehicle modeling. https://github.com/mathworks/vehicle-modeling/releases/tag/v4.1.1. Github. Retrieved November 23, 2021.

  • Mehra, A., Ma, W., Berg, F., Tabuada, P., Grizzle, J. W., & Ames, A. D. (2015). Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars. In 2015 American control conference (ACC) (pp. 1411–1418).

  • Moon, S., Moon, I., & Yi, K. (2009). Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance. Control Engineering Practice, 17(4), 442–455.

    Article  Google Scholar 

  • Moon, S., & Yi, K. (2008). Human driving data-based design of a vehicle adaptive cruise control algorithm. Vehicle System Dynamics, 46(8), 661–690.

    Article  Google Scholar 

  • Nagumo, M. (1942). Uber die lage der integralkurven gewohnlicher differentialgleichungen. In Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24 (551–559).

  • Naus, G. J. L., Ploeg, J., Molengraft, M. J. G., Heemels, W. P. M. H., & Steinbuch, M. (2010). Design and implementation of parameterized adaptive cruise control: An explicit model predictive control approach. Control Engineering Practice, 18(8), 882–892.

    Article  MATH  Google Scholar 

  • Nguyen, Q., & Screenath, K. (2015). Safety-critical control for dynamical bipedal walking with precise footstep placement. IFAC Papers Online, 48(27), 147–154.

    Article  Google Scholar 

  • Peng, H. (2002). Evaluation of driver assistance systems—A human centered approach. In 6th International symposium on advanced vehicle control (AVEC).

  • Polack, P., Delprat, S., & Novel, B. (2019). Brake and velocity model-free control on an actual vehicle. Control Engineering Practice, 92(8), 1–35.

    Google Scholar 

  • Rauscher, M., Kimmel, M., & Hirche, S. (2016). Constrained robot control using control barrier functions. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 279–285).

  • Romdlony, M. Z., & Jayawardhana, B. (2016). Stabilization with guaranteed safety using control Lyapunov-barrier function. Automatica, 66, 39–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawant, J., Chaskar, U., & Ginoya, D. (2021). Robust control of cooperative adaptive cruise control in the absence of information about preceding vehicle acceleration. IEEE Transactions on Intelligent Transportation Systems, 22(9), 5589–5598.

    Article  Google Scholar 

  • Sehili, L., & Boukhezzar, B. (2022). Ultra-local model design based on real-time algebraic and derivative estimators for position control of a DC motor. Journal of Control, Automation and Electrical Systems, 33, 1217–1228.

    Article  Google Scholar 

  • Sontag, E. (1989). A universal construction of Artstein’s theorem on nonlinear stabilization. Systems and Control Letters, 13(2), 117–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Tee, K. P., Ge, S. S., & Tay, E. H. (2009). Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4), 918–927.

    Article  MathSciNet  MATH  Google Scholar 

  • Vahidi, A., & Eskandarian, A. (2003). Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3), 143–153.

    Article  Google Scholar 

  • Wang, Z., & Wang, J. (2020). Ultra-local model predictive control: A model-free approach and its application on automated vehicle trajectory tracking. Control Engineering Practice, 101(2), 1–14.

    Google Scholar 

  • Wieland, P., & Allgower, F. (2007). Constructive safety using control barrier functions. IFAC Proceedings Volumes, 40(12), 462–467.

    Article  Google Scholar 

  • Wu, C., Lin, Y., & Eskandarian, A. (2019). Cooperative adaptive cruise control with adaptive Kalman filter subject to temporary communication loss. IEEE Access, 7, 93558–93568.

    Article  Google Scholar 

  • Wu, C., Xu, Z., Liu, Y., Fu, C., Li, K., & Hu, M. (2020). Spacing policies for adaptive cruise control: A survey. IEEE Access, 8, 50149–50162.

    Article  Google Scholar 

  • Wu, G. & Sreenath, K. (2016). Safety-critical control of a planar quadrotor. In 2016 American control conference (ACC) (pp. 2252–2258).

  • Xiao, L., & Gao, F. (2010). A comprehensive review of the development of adaptive cruise control systems. Vehicle System Dynamics, 48(10), 1167–1192.

    Article  Google Scholar 

  • Xu, X., Waters, T., Pickem, D., Glotfelter, P., Egerstedt, M., Tabuada, P., Grizzle, J. W., & Ames, A. D. (2017). Realizing simultaneous lane keeping and adaptive speed regulation on accessible mobile robot testbeds. In 2017 IEEE conference on control technology and applications (CCTA) (pp. 1769–1775).

  • Yang, L., Mao, J., Liu, K., Du, J., & Liu, J. (2020). An adaptive cruise control method based on improved variable time headway strategy and particle swarm optimization algorithm. IEEE Access, 8, 168333–168343.

    Article  Google Scholar 

  • Zeng, J., Zhang, B., & Sreenath, K. (2021). Safety-critical model predictive control with discrete-time control barrier function. In 2021 American control conference (ACC) (pp. 3882–3889).

  • Zhu, Y., He, H., & Zhao, D. (2020). LMI-based synthesis of string-stable controller for cooperative adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4516–4525.

Download references

Acknowledgements

The authors would like to thank Fundação de Desenvolvimento da Pesquisa - Fundep Rota 2030 - Linha V, for the Grant SegurAuto - Projeto e Desenvolvimento Integrado de Funções de Segurança Assistida ao Condutor e Ambiente para Veículos Autônomos and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, for grant 308356/2021-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Igor Gonçalves Chinelato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinelato, C.I.G., Angélico, B.A., Justo, J.F. et al. Design of Adaptive Cruise Control with Control Barrier Function and Model-Free Control. J Control Autom Electr Syst 34, 470–483 (2023). https://doi.org/10.1007/s40313-023-00990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-00990-x

Keywords

Navigation