Skip to main content
Log in

Selection of Minimum Rules from a Fuzzy TSK Model Using a PSO–FCM Combination

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work proposes an efficient and promising method for linear and nonlinear dynamic systems modeling. Unlike previous methods, we combine Fuzzy C-Means (FCM) and modified Particle Swarm Optimization (PSO) algorithms. The FCM allows clustering large nonlinear data sets (good rule-base parameters initialization). The PSO algorithm is used to optimize the parameters of the fuzzy system rules (initialized by FCM). This combination allows reducing the rule-base of TSK fuzzy model considering the three goals: have a good initialization of the parameters to be optimized, handling complex systems with ensuring a high accuracy and a low complex algorithm structure. Indeed, from a given fuzzy rule-base, FCM–PSO selects a subset of important fuzzy rules based on the threshold criterion of each rule. The interaction between the particles improves iteratively the quality of each fuzzy rule. Simulation results using two well-known benchmark functions show the efficiency of the proposed approach when compared to previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abazari, A., Soleymani, M. M., Kamwa, I., Babaei, M., Ghafouri, M., Muyeen, S. M., & Foley, A. M. (2021). A reliable and cost-effective planning framework of rural area hybrid system considering intelligent weather forecasting. Energy Reports, 7, 5647–5666.

    Article  Google Scholar 

  • Aguilar, M. E. B., Coury, D. V., Machado, F. R., & Reginatto, R. (2021). Tuning of DFIG wind turbine controllers with voltage regulation subjected to electrical faults using a PSO algorithm. Journal of Control, Automation and Electrical Systems, 32(5), 1417–1428.

    Article  Google Scholar 

  • Al-Mohair, H. K., Mohamad, S. Junita., & Azmin, S. Shahrel. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33, 337–347.

    Article  Google Scholar 

  • Azar, A. T., Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Springer.

  • Bagis, A., & Konar, M. (2016). Comparison of Sugeno and Mamdani fuzzy models optimized by artificial bee colony algorithm for nonlinear system modelling. Transactions of the Institute of Measurement and Control, 38(5), 579–592.

    Article  Google Scholar 

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, 10(2–3), 191–203.

    Article  Google Scholar 

  • Brikh, L., Guenounou, O., Yahiaoui, F., Kacimi, M.A. & Ouaret, A. (2016). Optimization of TSK fuzzy model using new improved PSO. International Journal of Control Theory and Applications, International Science Press, 323–333.

  • Cavuslu, M. A., Karakuzu, C., & Karakaya, F. M. (2012). Neural identification of dynamic systems on FPGA with improved PSO learning. Applied Soft Computing, 12(9), 2707–2718.

    Article  Google Scholar 

  • Eberhart, R., Kennedy, J. (1995) A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). IEEE.

  • Farag, W. A., Quintana, V. H., & Lambert-Torres, G. (1998). A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems. IEEE Transactions on Neural Networks, 9(5), 756–767.

    Article  Google Scholar 

  • Ghomsheh, V. S., Shoorehdeli, M. A., & Teshnehlab, M. (2007). Training ANFIS structure with modified PSO algorithm. In 2007 Mediterranean conference on control and automation (pp. 1–6). IEEE.

  • Guenounou, O., Dahhou, B., & Chabour, F. (2015). TSK fuzzy model with minimal parameters. Applied Soft Computing, 30(3), 748–757.

    Article  Google Scholar 

  • Hilal, A., Boudjema, F., & Boukhetala, D. (2016). A multiobjective tuning approach of power system stabilizers using particle swarm optimization. Turkish Journal of Electrical Engineering and Computer Sciences, 24, 3898–3909.

    Article  Google Scholar 

  • Ishibuchi, H., & Yamamoto, T. (2005). Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems, 15(4), 428–435.

    Article  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Kacimi, M. A., Guenounou, O., Brikh, L., Haddid, N., & Yahiaoui, F. (2020). New mixed-coding PSO algorithm for a self-adaptive and automatic learning of Mamdani fuzzy rules. Engineering Applications of Artificial Intelligence, 89, 103–417.

    Article  Google Scholar 

  • Kahloul, A., & Anis, A. Sakly. (2020). Hybrid approach for constrained optimal control of nonlinear switched systems. Journal of Control, Automation and Electrical Systems, 31(4), 865–873.

    Article  Google Scholar 

  • Kanungo, D. P., Naik, B., Nayak, J., Baboo, S., & Behera, H. S. (2015). An improved PSO based back propagation learning-MLP (IPSO-BP-MLP) for classification. Computational Intelligence in Data Mining, 1, 333–344.

    Google Scholar 

  • Karakuzu, C. (2017). On the performance of newsworthy meta-heuristic algorithms based on point of view fuzzy modelling. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4706–4721.

    Article  Google Scholar 

  • Kilic, H., Yuzgec, U., & Karakuzu, C. (2020). A novel improved antlion optimizer algorithm and its comparative performance. Neural Computing and Applications, 32(8), 3803–3824.

    Article  Google Scholar 

  • Li, W., Qiao, J., Zeng, X. J., & Du, S. (2020). Identification and simplification of TS fuzzy neural networks based on incremental structure learning and similarity analysis. Fuzzy Sets and Systems, 394, 65–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Zhou, J., Chang, I., & Huang, Z. (2017). T–S fuzzy model identification with a novel hyper plane-shaped membership function. IEEE Transactions on Fuzzy Systems, 25(5), 1364–1370.

    Article  Google Scholar 

  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7, 1–13.

    Article  MATH  Google Scholar 

  • Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27.

    Article  Google Scholar 

  • Nauck, D., & Kruse, R. (1998). How the learning of rule weights affects the interpretability of fuzzy systems, In 1998 IEEE international conference on fuzzy systems proceedings. IEEE world congress on computational intelligence (Cat. No. 98CH36228) (Vol. 2, pp. 1235–1240). IEEE.

  • Pedrycz, W., & Izakian, H. (2014). Cluster-centric fuzzy modeling. IEEE Transactions on Fuzzy Systems, 22(6), 1585–1597.

    Article  Google Scholar 

  • Pratama, M., Pedrycz, W., & Lughofer, E. (2018). Evolving, ensemble fuzzy classifier. IEEE Transactions on Fuzzy Systems, 26(5), 2552–2567.

    Article  Google Scholar 

  • Raheleh, J., Yu, W. (2017). Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Mathematical Problems in Engineering

  • Spolaor, S., Nobile, M. S., Mauri, G., Cazzaniga, P., & Besozzi, D. (2019). Coupling mechanistic approaches and fuzzy logic to model and simulate complex systems. IEEE Transactions on Fuzzy Systems, 28(8), 1748–1759.

    Article  Google Scholar 

  • Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28, 15–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugeno, M., & Tanaka, K. (1991). Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and Systems, 2(3), 315–334.

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1, 116–132.

    Article  MATH  Google Scholar 

  • Tong, R. M. (1979). The construction and evaluation of fuzzy models. In Advances in fuzzy set theory and applications (pp. 559–576). North-Holland.

  • Wang, L.-X., & Mendel, J. M. (1992) Back-propagation fuzzy system as nonlinear dynamic system identifiers. In 1992 Proceedings of international conference on fuzzy systems (pp. 1409–1418). IEEE.

  • Wang, L., & Langari, R. (1996). Complex systems modeling via fuzzy logic. IEEE Transactions on Systems, Man. and Cybernetics, Part B (Cybernetics), 26(1), 100–106.

    Article  Google Scholar 

  • Yen, J., & Wang, L. (1999). Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(1), 13–24.

    Article  MathSciNet  Google Scholar 

  • Zenadji, S., Gueguen, C., Brikh, L., Talbi, L., & Khireddine, A. (2020). New strategy for resource allocation using PSO-PFS hybrid. International Journal of Wireless and Mobile Computing, 18(2), 175–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamine Brikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brikh, L., Guenounou, O. & Bakir, T. Selection of Minimum Rules from a Fuzzy TSK Model Using a PSO–FCM Combination. J Control Autom Electr Syst 34, 384–393 (2023). https://doi.org/10.1007/s40313-022-00975-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00975-2

Keywords

Navigation