Skip to main content
Log in

Design and Analysis of Multiple Inlet–Multiple Outlet Piezoelectric Actuated Valveless Micropump for Micro Drug Delivery Application

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the design of multiple inlet- multiple outlet piezoelectric valveless micropump intending for applications in the medical field such as drug delivery, lab-on-chip devices, smart surgical tools, blood pressure sensor and glucose sensors. An extensive analysis is carried out using benchmark FEM tool COMSOL multiphysics to predict the accurate behavior of the micropump under different condition. The comparative analysis among different types of configuration has been performed and the best one among these is listed and explained with the help of parameters such as outlet flow velocity, flow rate and back pressure. It is evident from the results that 2-inlet 1-outlet piezoelectric valveless micropump seems to efficient as its maximum flow rate is reported as \(35.85\,{\upmu} {\mathrm{l}}/{\mathrm{min}}\) which is greater as compared to 2-inlet 2-outlet micropump whose maximum flow rate is \(11.6\,{\upmu} {\mathrm{l}}/{\mathrm{min}}.\) The flow is considered as laminar flow owing to Reynolds number is less than 2000. Different studies are conducted by changing the parameters which reveals that the flow rate is affected with the change in average inlet flow velocity of working fluid, diameter of the micropump, length of diffuser/nozzle. The study will help researches, scientists and medical personnel to establish a precise and controlled drug delivery using micropump in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Due to the ethical issue of our Institute, authors do not want to submit the raw data. However, during the review process, if the editor/reviewer needs to verify the raw data it can be shared.

References

  • Andersson, H., Van Der Wijngaart, W., Nilsson, P., Enoksson, P., & Stemme, G. (2001). A valve-less diffuser micropump for microfluidic analytical systems. Sensors and Actuators B: Chemical, 72(3), 259–265.

    Article  Google Scholar 

  • Atul, S.T. and Babu, M.L., 2016, September. Characterization of valveless micropump for drug delivery by using piezoelectric effect. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2138–2144). IEEE.

  • Avesar, J., Arye, T. B., & Levenberg, S. (2014). Frontier microfluidic techniques for short and long-term single cell analysis. Lab on a Chip, 14(13), 2161–2167.

    Article  Google Scholar 

  • Bourouina, T., Bossebuf, A., & Grandchamp, J. P. (1997). Design and simulation of an electrostatic micropump for drug-delivery applications. Journal of Micromechanics and Microengineering, 7(3), 186.

    Article  Google Scholar 

  • Bratt-Leal, A. M., Nguyen, A. H., Hammersmith, K. A., Singh, A., & McDevitt, T. C. (2013). A microparticle approach to morphogen delivery within pluripotent stem cell aggregates. Biomaterials, 34(30), 7227–7235.

    Article  Google Scholar 

  • Cao, L., Mantell, S., & Polla, D. (2001). Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sensors and Actuators A: Physical, 94(1–2), 117–125.

    Article  Google Scholar 

  • Cheng, C. H., & Tseng, Y. P. (2013). Characteristic studies of the piezoelectrically actuated micropump with check valve. Microsystem Technologies, 19(11), 1707–1715.

    Article  Google Scholar 

  • Cui, Q., Liu, C., & Zha, X. F. (2007). Study on a piezoelectric micropump for the controlled drug delivery system. Microfluidics and Nanofluidics, 3(4), 377–390.

    Article  Google Scholar 

  • Fadl, A., 2010. Valve-less rectification micropumps based on bifurcation structures (Doctoral dissertation, Technische Universität Braunschweig).

  • Fadl, A., Zhang, Z., Faghri, M., Meyer, D. and Simmon, E., 2007, January. Experimental investigation on geometric effect on micro fluidic diodicity. In International Conference on Nanochannels, Microchannels, and Minichannels (Vol. 4272, pp. 489–492).

  • Francais, O., & Dufour, I. (1998). Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena. Sensors and Actuators A: Physical, 70(1–2), 56–60.

    Article  Google Scholar 

  • Gravesen, P., Branebjerg, J., & Jensen, O. S. (1993). Microfluidics-a review. Journal of Micromechanics and Microengineering, 3(4), 168.

    Article  Google Scholar 

  • Grayson, A. C. R., Shawgo, R. S., Li, Y., & Cima, M. J. (2004). Electronic MEMS for triggered delivery. Advanced Drug Delivery Reviews, 56(2), 173–184.

    Article  Google Scholar 

  • Hatch, A., Kamholz, A. E., Holman, G., Yager, P., & Bohringer, K. F. (2001). A ferrofluidic magnetic micropump. Journal of Microelectromechanical Systems, 10(2), 215–221.

    Article  Google Scholar 

  • Herrlich, S., Spieth, S., Messner, S., & Zengerle, R. (2012). Osmotic micropumps for drug delivery. Advanced Drug Delivery Reviews, 64(14), 1617–1627.

    Article  Google Scholar 

  • House, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing biomaterial platforms for cardiac tissue and disease modeling. Advanced NanoBiomed Research, 1(1), 2000022.

    Article  Google Scholar 

  • Jang, L. S., & Kan, W. H. (2007). Peristaltic piezoelectric micropump system for biomedical applications. Biomedical Microdevices, 9(4), 619–626.

    Article  Google Scholar 

  • Jeong, O. C., & Yang, S. S. (2000). Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sensors and Actuators A: Physical, 83(1–3), 249–255.

    Article  Google Scholar 

  • Junwu, K., Zhigang, Y., Taijiang, P., Guangming, C., & Boda, W. (2005). Design and test of a high-performance piezoelectric micropump for drug delivery. Sensors and Actuators a: Physical, 121(1), 156–161.

    Article  Google Scholar 

  • Kan, J., Yang, Z., Tang, K., & Cheng, G. (2004). Pumping performance of a new piezoelectric pump for drug delivery. Journal of Biomedical Engineering, 21(2), 297–301.

    Google Scholar 

  • Kochhar, J. S., Goh, W. J., Chan, S. Y., & Kang, L. (2013). A simple method of microneedle array fabrication for transdermal drug delivery. Drug Development and Industrial Pharmacy, 39(2), 299–309.

    Article  Google Scholar 

  • Kumar, N., George, D., Sajeesh, P., Manivannan, P. V., & Sen, A. K. (2016). Development of a solenoid actuated planar valveless micropump with single and multiple inlet–outlet arrangements. Journal of Micromechanics and Microengineering, 26(7), 075013.

    Article  Google Scholar 

  • Li, Y., 2005. Mechanical characterization and in vivo operation of an implantable drug delivery MEMS device (Doctoral dissertation, Massachusetts Institute of Technology).

  • Lins, G. and Skogberg, L., 2001. An investigation of insulin pump therapy and evaluation of using a micropump in a future insulin pump. Examensarbete MMK, Stockholm.

  • Liu, G., Yang, Z., Liu, J., Li, X., Wang, H., Zhao, T., & Yang, X. (2014). A low cost, high performance insulin delivery system based on PZT actuation. Microsystem Technologies, 20(12), 2287–2294.

    Article  Google Scholar 

  • Nguyen, N. T., Shaegh, S. A. M., Kashaninejad, N., & Phan, D. T. (2013). Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced Drug Delivery Reviews, 65(11–12), 1403–1419.

    Article  Google Scholar 

  • Nguyen, T. T., Pham, M., & Goo, N. S. (2008). Development of a peristaltic micropump for bio-medical applications based on mini LIPCA. Journal of Bionic Engineering, 5(2), 135–141.

    Article  Google Scholar 

  • Ni, J., Huang, F., Wang, B., Li, B., & Lin, Q. (2010). A planar PDMS micropump using in-contact minimized-leakage check valves. Journal of Micromechanics and Microengineering, 20(9), 095033.

    Article  Google Scholar 

  • Nisar, A., Afzulpurkar, N., Mahaisavariya, B., & Tuantranont, A. (2008). MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators b: Chemical, 130(2), 917–942.

    Article  Google Scholar 

  • Olsson, A., Enoksson, P., Stemme, G., & Stemme, E. (1997). Micromachined flat-walled valveless diffuser pumps. Journal of Microelectromechanical Systems, 6(2), 161–166.

    Article  Google Scholar 

  • Olsson, A., Stemme, G., & Stemme, E. (2000). Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sensors and Actuators a: Physical, 84(1–2), 165–175.

    Article  Google Scholar 

  • Polla, D.L., 2001, September. BioMEMS applications in medicine. In MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No. 01TH8583) (pp. 13–15). IEEE.

  • Rajabi, F., Bakhshi, A. and Kazemi, G., Drug delivery applications of mechanical micropumps.

  • Riahi, R., Tamayol, A., Shaegh, S. A. M., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2015). Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 7, 101–112.

    Article  Google Scholar 

  • Safavieh, R., & Juncker, D. (2013). Miniaturisation for chemistry, physics, biology, materials science and bioengineering. Lab on a Chip, 13, 4180–4189.

    Article  Google Scholar 

  • Shome, S. K., Jana, S., Mukherjee, A., & Bhattacharjee, P. (2019). Design of adaptive voltage dither control framework based on spectral analysis for nonlinear piezoelectric actuator. Journal of Control, Automation and Electrical Systems, 30(6), 954–969.

    Article  Google Scholar 

  • Shome, S. K., Jana, S., Mukherjee, A., & Bhattacharjee, P. (2021). Model-based control for second-order piezo actuator system with hysteresis in time-delay environment. Turkish Journal of Electrical Engineering & Computer Sciences, 29(3), 1495–1508.

    Article  Google Scholar 

  • Shome, S. K., Mukherjee, A., Karmakar, P., & Datta, U. (2018). Adaptive feed-forward controller of piezoelectric actuator for micro/nano-positioning. Sādhanā, 43(10), 1–9.

    Article  MathSciNet  Google Scholar 

  • Song, P., Hu, R., Tng, D. J. H., & Yong, K. T. (2014). Moving towards individualized medicine with microfluidics technology. Rsc Advances, 4(22), 11499–11511.

    Article  Google Scholar 

  • Song, P., Tng, D. J. H., Hu, R., Lin, G., Meng, E., & Yong, K. T. (2013). An electrochemically actuated MEMS device for individualized drug delivery: An in vitro study. Advanced Healthcare Materials, 2(8), 1170–1178.

    Article  Google Scholar 

  • Staples, M., Daniel, K., Cima, M. J., & Langer, R. (2006). Application of micro-and nano-electromechanical devices to drug delivery. Pharmaceutical Research, 23(5), 847–863.

    Article  Google Scholar 

  • Stemme, E., & Stemme, G. (1993). A valveless diffuser/nozzle-based fluid pump. Sensors and Actuators a: Physical, 39(2), 159–167.

    Article  Google Scholar 

  • Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., & Juncker, D. (2013). Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 31(5), 669–687.

    Article  Google Scholar 

  • Tao, S. L., & Desai, T. A. (2003). Microfabricated drug delivery systems: From particles to pores. Advanced Drug Delivery Reviews, 55(3), 315–328.

    Article  Google Scholar 

  • Woias, P. (2005). Micropumps—past, progress and future prospects. Sensors and Actuators b: Chemical, 105(1), 28–38.

    Article  Google Scholar 

  • Wu, J., Kong, T., Yeung, K. W. K., Shum, H. C., Cheung, K. M. C., Wang, L., & To, M. K. T. (2013). Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomaterialia, 9(7), 7410–7419.

    Article  Google Scholar 

  • Xiang, J., 2018. Microfluidic Technology and Application in Urinal Analysis.

  • Zhang, M., Tarn, T.J. and Xi, N., 2004, April. Micro/nano-devices for controlled drug delivery. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 2068–2073). IEEE.

Download references

Acknowledgements

The authors would like to thank NMDCNIT Silchar for necessary financial support to carry out the project.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to MKSL Gayatri.

Ethics declarations

Conflict of interest

The author declares no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayatri, M., Guha, K. & Sateesh, J. Design and Analysis of Multiple Inlet–Multiple Outlet Piezoelectric Actuated Valveless Micropump for Micro Drug Delivery Application. J Control Autom Electr Syst 34, 429–442 (2023). https://doi.org/10.1007/s40313-022-00961-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00961-8

Keywords

Navigation