Skip to main content
Log in

Chaos Synchronization for a Class of Hyperchaotic Systems Using Active SMC and PI SMC : A Comparative Analysis

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this article, the synchronization problem of hyperchaotic systems is addressed on the basis of active sliding mode control (SMC) and proportional integral (PI) SMC techniques. The stability analysis in the suggested methodologies is derived with the help of Lyapunov stability approach. In the manuscript, a comparative study presenting both above mentioned SMC approaches has been presented. Further, both the SMC techniques have been stretched to analyze secure communication for hyperchaotic systems under consideration. Switching surfaces are constructed using active SMC and PI SMC to achieve the purpose of synchronization. Between both the control techniques, PI switching surface simplifies the operation of synchronization in comparison with active control switching surface. In PI SMC, lesser number of control signals are needed to achieve the desired synchronization. The system parameters have been considered to be known. In a master–slave arrangement, the suggested controllers assure the presence of sliding motion and attain asymptotic synchronization of hyperchaotic systems. Ultimately, numerical simulations are produced to establish and authenticate the suggested controllers’ effectiveness. This paper presents the effectiveness of the two control approaches designed for addressing synchronization problems along with secure communication scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Obeidi, A. S., & Al-Azzawi, S. F. (2019). Projective synchronization for a class of 6-d hyperchaotic Lorenz system. Indonesian Journal of Electrical Engineering and Computer Science, 16(2), 692–700.

    Article  Google Scholar 

  • Al-Talib, Z. S., & Al-Azzawi, S. F. (2020). Projective and hybrid projective synchronization of 4-d hyperchaotic system via nonlinear controller strategy. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(2), 1012–1020.

    Article  Google Scholar 

  • Bai, E.-W., & Lonngren, K. E. (1997). Synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals, 8(1), 51–58.

    Article  MATH  Google Scholar 

  • Bai, E.-W., & Lonngren, K. E. (2000). Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons & Fractals, 11(7), 1041–1044.

    Article  MATH  Google Scholar 

  • Blasius, B., Huppert, A., & Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 399(6734), 354–359.

    Article  Google Scholar 

  • Cai, N., Jing, Y., & Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Communications in Nonlinear Science and Numerical Simulation, 15(6), 1613–1620.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, G., & Dong, X. (1993). On feedback control of chaotic continuous-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(9), 591–601.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, H.-K. (2005). Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solitons & Fractals, 23(4), 1245–1251.

    Article  MATH  Google Scholar 

  • Fang, J., Gao, W., & Deng, W. (2015). Synchronization of uncertain chaos system with time delay via hybrid feedback control. In 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (cyber) (pp. 1959–1964).

  • Fang, J.-S., Tsai, J.S.-H., Yan, J.-J., Chiang, L.-H., & Guo, S.-M. (2022). Secure data transmission and image encryption based on a digital-redesign sliding mode chaos synchronization. Mathematics, 10(3), 518.

    Article  Google Scholar 

  • Haeri, M., & Emadzadeh, A. A. (2007). Synchronizing different chaotic systems using active sliding mode control. Chaos, Solitons & Fractals, 31(1), 119–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Han, S. K., Kurrer, C., & Kuramoto, Y. (1995). Dephasing and bursting in coupled neural oscillators. Physical Review Letters, 75(17), 3190.

    Article  Google Scholar 

  • Ho, M.-C., & Hung, Y.-C. (2002). Synchronization of two different systems by using generalized active control. Physics Letters A, 301(5–6), 424–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, L., Feng, R., & Wang, M. (2004). Synchronization of chaotic systems via nonlinear control. Physics Letters A, 320(4), 271–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R., & Bekiros, S. (2019). A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization. Chaos, Solitons & Fractals, 126, 66–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Jang, M.-J., Chen, C.-L., et al. (2002). Sliding mode control of hyperchaos in Rössler systems. Chaos, Solitons & Fractals, 14(9), 1465–1476.

    Article  MathSciNet  MATH  Google Scholar 

  • Jia, Q. (2007). Adaptive control and synchronization of a new hyperchaotic system with unknown parameters. Physics Letters A, 362(5–6), 424–429.

    Article  MATH  Google Scholar 

  • Karimov, T., Rybin, V., Kolev, G., Rodionova, E., & Butusov, D. (2021). Chaotic communication system with symmetry-based modulation. Applied Sciences, 11(8), 3698.

    Article  Google Scholar 

  • Kocarev, L., & Parlitz, U. (1995). General approach for chaotic synchronization with applications to communication. Physical Review Letters, 74(25), 5028.

    Article  Google Scholar 

  • Kwok, H. S., Tang, W. K., & Man, K.-F. (2004). Online secure chatting system using discrete chaotic map. International Journal of Bifurcation and Chaos, 14(01), 285–292.

    Article  MATH  Google Scholar 

  • Li, X.-B., Wang, Q.-S., Yao, J.-R., & Zhao, G.-Y. (2008). Chaotic time series prediction for surrounding rock’s deformation of deep mine lanes in soft rock. Journal of Central South University of Technology, 15(2), 224–229.

    Article  Google Scholar 

  • Merat, K., Sadeghian, H., Salarieh, H., & Alasty, A. (2007). Chaos control of a sprott circuit using delayed feedback control: Experimental study. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1–4).

  • Murali, K., & Lakshmanan, M. (2003). Secure communication using a compound signal using sampled-data feedback. Applied Mathematics and Mechanics, 11, 1309–1315.

    Google Scholar 

  • Nepomuceno, E. G., & Mendes, E. M. (2017). On the analysis of pseudo-orbits of continuous chaotic nonlinear systems simulated using discretization schemes in a digital computer. Chaos, Solitons & Fractals, 95, 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64(11), 1196.

    Article  MathSciNet  MATH  Google Scholar 

  • Pallav, & Handa, H. (2021). Active control synchronization of similar and dissimilar chaotic systems. In 2021 Innovations in power and advanced computing technologies (i-pact) (pp. 1–6).

  • Pallav, & Handa, H. (2022). Simple synchronization scheme for a class of nonlinear chaotic systems using a single input control. IETE Journal of Research, 1–14.

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.

    Article  MathSciNet  MATH  Google Scholar 

  • Roopaei, M., Zolghadri, M., & Meshksar, S. (2009a). Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 14(9–10), 3670–3681.

  • Roopaei, M., & Zolghadri Jahromi, M. (2008). Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 033133.

    Article  MathSciNet  MATH  Google Scholar 

  • Roopaei, M., Zolghadri Jahromi, M., & Jafari, S. (2009b). Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(1), 013125.

  • Tl, C., & Lm, P. (1991). Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems, 38(4), 453–456.

    Article  Google Scholar 

  • Tutueva, A. V., Moysis, L., Rybin, V. G., Kopets, E. E., Volos, C., & Butusov, D. N. (2022). Fast synchronization of symmetric Hénon maps using adaptive symmetry control. Chaos, Solitons & Fractals, 155, 111732.

    Article  MATH  Google Scholar 

  • Vaidyanathan, S., & Sampath, S. (2011). Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In International conference on digital image processing and information technology (pp. 156–164).

  • Wang, X., & Wang, M. (2008). A hyperchaos generated from Lorenz system. Physica A: Statistical Mechanics and its Applications, 387(14), 3751–3758.

    Article  MathSciNet  Google Scholar 

  • Yan, J.-J., Yang, Y.-S., Chiang, T.-Y., & Chen, C.-Y. (2007). Robust synchronization of unified chaotic systems via sliding mode control. Chaos, Solitons & Fractals, 34(3), 947–954.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, S., Qian, C., Huang, T., & Lin, W. (2014). Synchronization via sampled-data outputfeedback for a class of chaotic systems. In 53rd IEEE conference on decision and control (pp. 2322–2327).

  • Yin, X., Ren, Y., & Shan, X. (2002). Synchronization of discrete spatiotemporal chaos by using variable structure control. Chaos, Solitons & Fractals, 14(7), 1077–1082.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Liao, X., & Yu, J. (2005a). Fuzzy modeling and synchronization of hyperchaotic systems. Chaos, Solitons & Fractals, 26(3), 835–843.

  • Zhang, H., Ma, X.-K., Li, M., & Zou, J.-L. (2005b). Controlling and tracking hyperchaotic Rössler system via active backstepping design. Chaos, Solitons & Fractals, 26(2), 353–361.

  • Zhang, H., Ma, X.-K., & Liu, W.-Z. (2004). Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. Chaos, Solitons & Fractals, 21(5), 1249–1257.

    Article  MATH  Google Scholar 

  • Zhao, Y., Zhang, W., Su, H., & Yang, J. (2018). Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12), 5221–5232.

    Article  Google Scholar 

  • Zhou, J., & Wen, C. (2008). Adaptive backstepping control of uncertain systems: Nonsmooth nonlinearities, interactions or timevariations. Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallav, Handa, H. Chaos Synchronization for a Class of Hyperchaotic Systems Using Active SMC and PI SMC : A Comparative Analysis. J Control Autom Electr Syst 33, 1671–1687 (2022). https://doi.org/10.1007/s40313-022-00960-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00960-9

Keywords

Navigation