Skip to main content

Performance Analysis of a Silo-SlideGate-Feeder System to Regulate the Ore Flow by DEM Simulation

Abstract

Severe variability of fresh feed ore flowrate in a crushing circuit may cause some operational damages. Related issues include conveyor belt and sieves overload, interlocked crushers, early equipment wear, and silos overflow. Usually, the speed of feeders is used to control the ore output from silos; however, it is ineffective in regulating the height of material carried by the feeder. The introduction of a slide gate in the primary silo of the crushing circuit is an alternative to increase the degree of freedom for controlling the fresh ore flowrate. This paper presents a numerical simulation using a discrete element method (DEM) applied in a silo-gate-feeder system. The simulated model is based on parameters from a Vale’s iron ore beneficiation plant located in Serra Leste Mine, city of Curionópolis, Brazil. The simulation was carried out using the software Siemens Star CCM+ ®. Three scenarios were evaluated, such as changes in the slide gate aperture. The results show that regulating the feeder speed simultaneously with the gate aperture provides a novel control strategy to reduce variability in fresh ore flowrate. The best simulation result reduced in about 11% the variability flowrate compared with the case with no slide gate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

\(C_{fs}\) :

Static friction coefficient

\(C_{n rest}\) :

Normal restitution coefficient

\(C_{t rest}\) :

Tangential restitution coefficient

D :

Particle diameter

\(D_{ref}\) :

Particle reference diameter

\(d_{n}\) :

Overlap in the normal direction

\(d_{t}\) :

Overlap in the tangential direction

\(E_{A}\) :

Sphere A Young’s modulus

\(E_{B}\) :

Sphere B Young’s modulus

\(E_{eq}\) :

Equivalent Young’s modulus

\(F_{contact}\) :

Contact force between particles and structure

\(F_{n}\) :

Normal force

\(F_{t}\) :

Tangential force

\(G_{eq}\) :

Equivalent shear modulus

\(K_{n}\) :

Normal stiffness

\(K_{t}\) :

Tangential stiffness

\(M_{A}\) :

Sphere A mass

\(M_{B}\) :

Sphere B mass

\(M_{eq}\) :

Equivalent mass

\(N_n\) :

Normal damping

\(N_t\) :

Tangential damping

\(N_{n damp}\) :

Normal damping coefficient

\(N_{t damp}\) :

Tangential damping coefficient

\(R_{A}\) :

Sphere A radius

\(R_{B}\) :

Sphere B radius

\(R_{eq}\) :

Equivalent radius

\(V_{A}\) :

Sphere A Poisson’s ratio

\(V_{B}\) :

Sphere B Poisson’s ratio

\(V_{n}\) :

Normal velocity

\(V_{t}\) :

Tangential velocity

References

  • Dong, M., Mei, Y., Li, X., Shang, Y., & Li, S. (2018). Experimental measurement of the normal coefficient of restitution of micro-particles impacting on plate surface in different humidity. Powder Technology, 335, 250–257.

    Article  Google Scholar 

  • Fuerstenau, M.C., & Han, K.N. (2003). Principles of mineral processing. SME

  • Gaudin, A.M. (1939). Principles of mineral dressing. Tech. rep.

  • Hertz, H. (1881). On the contact of elastic solids. Journal fur die reine und angewandte Mathematik, 92, 156–171.

    MATH  Google Scholar 

  • Johansson, M., Quist, J., Evertsson, M., & Hulthén, E. (2017). Cone crusher performance evaluation using dem simulations and laboratory experiments for model validation. Minerals Engineering, 103, 93–101.

    Article  Google Scholar 

  • Kretz, D., Callau-Monje, S., Hitschler, M., Hien, A., Raedle, M., & Hesser, J. (2016). Discrete element method (dem) simulation and validation of a screw feeder system. Powder Technology, 287, 131–138.

    Article  Google Scholar 

  • Li, Z., Tong, X., Zhou, B., & Wang, X. (2015). Modeling and parameter optimization for the design of vibrating screens. Minerals Engineering, 83, 149–155. https://doi.org/10.1016/j.mineng.2015.07.009. https://linkinghub.elsevier.com/retrieve/pii/S0892687515300340

  • Mindlin, R. D. (1949). Compliance of elastic bodies in contact. Journal of Applied Mechanics, ASME, 16, 259–268.

    MathSciNet  Article  Google Scholar 

  • Owen, P., & Cleary, P. (2009). Prediction of screw conveyor performance using the discrete element method (dem). Powder Technology, 193(3), 274–288.

    Article  Google Scholar 

  • Pegden, C.D., Sadowski, R.P., & Shannon, R.E. (1995). Introduction to simulation using SIMAN. McGraw-Hill, Inc.

  • Qiao, J., Duan, C., Jiang, H., Zhao, Y., Chen, J., Huang, L., Wen, P., & Wu, J. (2018). Research on screening mechanism and parameters optimization of equal thickness screen with variable amplitude based on dem simulation. Powder Technology, 331, 296–309.

    Article  Google Scholar 

  • Quist, J., & Evertsson, C. M. (2016). Cone crusher modelling and simulation using dem. Minerals Engineering, 85, 92–105.

    Article  Google Scholar 

  • Santana, R., Santos, K., Campos, A., Ferreira, L., Oliveira, O., & Barrozo, M. (2015). Efeito dos parmetros do modelo de hertz-mindlin de forças de contato entre partículas sobre o ângulo de repouso estático da soja. Blucher Chemical Engineering Proceedings, 1(2), 11310–11317.

  • Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71(3), 239–250.

    Article  Google Scholar 

  • Valadão, G.E.S., & Araújo, A.d. (2007). Introdução ao tratamento de minérios. Belo Horizonte: Editora UFMG.

  • Washino, K., Chan, E. L., Matsumoto, T., Hashino, S., Tsuji, T., & Tanaka, T. (2017). Normal viscous force of pendular liquid bridge between two relatively moving particles. Journal of Colloid and Interface Science, 494, 255–265.

    Article  Google Scholar 

  • Weerasekara, N., Powell, M., Cleary, P., Tavares, L. M., Evertsson, M., Morrison, R., Quist, J., & Carvalho, R. (2013). The contribution of dem to the science of comminution. Powder Technology, 248, 3–24.

    Article  Google Scholar 

  • Wills, B.A., & Finch, J. (2015). Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann.

  • Xiao, X., Tan, Y., Zhang, H., Jiang, S., Wang, J., Deng, R., Cao, G., & Wu, B. (2015). Numerical investigation on the effect of the particle feeding order on the degree of mixing using dem. Procedia Engineering, 102, 1850–1856.

    Article  Google Scholar 

  • Zhao, Z., Jin, M., Qin, F., & Yang, S. X. (2021). A novel neural network approach to modeling particles distribution on vibrating screen. Powder Technology, 382, 254–261. https://doi.org/10.1016/j.powtec.2021.01.001. https://linkinghub.elsevier.com/retrieve/pii/S0032591021000012

  • Zheng, Q., Xu, M., Chu, K., Pan, R., & Yu, A. (2017). A coupled fem/dem model for pipe conveyor systems: Analysis of the contact forces on belt. Powder Technology, 314, 480–489.

Download references

Acknowledgements

We thank the financial support given by: the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001; the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grants 402759/2018-4 and 444425/2018-7; and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). We also acknowledge the support by Instituto Tecnológico Vale (ITV); Universidade Federal de Ouro Preto (UFOP), and Vale S.A. An early version of this paper has been presented at the XXIII Congresso Brasileiro de Automática (CBA 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo C. O. de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the link below, we provide a video comparing how Scenarios 1 and 3 behave in the EDEM software.

https://youtu.be/tezfJJezgKs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souza, L.C.O.d., Júnior, O.T.L., Barros, J.L. et al. Performance Analysis of a Silo-SlideGate-Feeder System to Regulate the Ore Flow by DEM Simulation. J Control Autom Electr Syst (2022). https://doi.org/10.1007/s40313-021-00879-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40313-021-00879-7

Keywords

  • Numerical simulation
  • DEM
  • Apron feeder
  • Sliding gate