Skip to main content
Log in

Robust Stability and Pole Placement

An Application of Parametric Interval Analysis

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose an integration of classic and parametric interval analysis methods for addressing robust stability and robust pole placement problems associated with linear dynamic systems with interval parameters. In order to reduce the conservatism of classic interval analysis and synthesis methods due to the parameter dependency phenomenon, we adopt a less conservative approach that explicitly considers multi-incident interval parameters. The paper includes numerical experiments which illustrates the characteristics and properties of the proposed methods, as well as their application to the control of an interval gyroscope system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alefeld, G., & Herzberger, J. (1983). Introduction to interval computations. New York, NY: Academic Press.

    MATH  Google Scholar 

  • Amini, F., & Khaloozadeh, H. (2017a). Robust fuzzy stabilisation of interval plants. International Journal of Systems Science, 48, 436–450.

    Article  MathSciNet  Google Scholar 

  • Amini, F., & Khaloozadeh, H. (2017b). Robust stabilization of multilinear interval plants by takagi-sugeno fuzzy controllers. Applied Mathematical Modelling, 51, 329–340.

    Article  MathSciNet  Google Scholar 

  • Armenise, M., Ciminelli, C., Dell‘Olio, F., & Passaro, V. (2010). Advances in gyroscope technologies. Berlin: Springer Science and Business Media.

    MATH  Google Scholar 

  • Barmish, B. R. (1985). Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. Journal of Optimization Theory and Applications, 46, 399–408.

    Article  MathSciNet  Google Scholar 

  • Bhattacharyya, S. P., Chapellat, H., & Keel, L. H. (1995). Robust Control: The Parametric Approach. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bingulac, S. P. (1970). An alternate approach to expanding PA + A‘= \(-\)Q. IEEE Transactions on Automatic Control, 15, 135–137.

    Article  Google Scholar 

  • Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. USA: SIAM Studies in Applied Mathematics.

    Book  Google Scholar 

  • Chapellat, H., Dahleh, M., & Bhattacharyya, S. P. (1990). Robust stability under structured and unstructured perturbations. IEEE Transactions on Automatic Control AC, 36(10), 1100–1108.

    Article  MathSciNet  Google Scholar 

  • Chen, C. T. (1999). Linear system theory and design (3rd ed.). New York: Oxford University Press Inc.

    Google Scholar 

  • Educate, Q. I. (2020). User Manual of Rotary Servo Plant: Gyroscope. Https://www.quanser.com/products/gyrostable-platform/, 17 mar. 2020

  • Fazzolari, H. A., Ferreira, P. A. V. (2018). Controle robusto via análise intervalar paramétrica com aplicação à estabilização de um giroscópio. In: Annals of XXII Brazilian Congress of Automatics, João Pessoa - PB - Brasil.

  • Florian, H., Giusti, A., & Althoff, M. (2017). Robust control of continuum robots using interval arithmetic. IFAC Papersonline, 50, 5660–5665.

    Article  Google Scholar 

  • Gardenes, E., Sainz, M. A., Jorba, L., Calm, R., Estela, R., Mielgo, H., & Trepat, A. (2001). Modal intervals. Reliable Computing, 7, 77–111.

    Article  MathSciNet  Google Scholar 

  • Hansen, E. R. (1975). A generalized interval arithmetic. Nicket K editor Interval Mathematics, Lect Notes Comput Sc, 29, 7–18.

    Article  Google Scholar 

  • Hladík, M., & Skalna, I. (2019). Relations between various methods for solving linear interval and parametric equations. Linear AlgebraanditsApplications, 574, 1–21.

    Article  MathSciNet  Google Scholar 

  • Huang, Y. (2018). An interval algorithm for uncertain dynamic stability analysis. Applied Mathematics and Computation, 338, 567–587.

    Article  MathSciNet  Google Scholar 

  • Jansson, C., & Rohn, J. (1999). An algorithm for checking regularity of interval matrices. SIAM Journal on Mathematical Analysis and Applications, 20, 756–776.

    Article  MathSciNet  Google Scholar 

  • Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied Interval Analysis. London: Springer-Verlag.

    Book  Google Scholar 

  • Kolev, L. V. (2014). Parameterized solution of linear interval parametric systems. Applied Mathematics and Computation, 246, 229–246.

    Article  MathSciNet  Google Scholar 

  • Lordelo, A. D. S., & Ferreira, P. A. V. (2006). Analysis and design of robust controllers using the interval diophantine equation. Reliable Computing, 12, 371–388.

    Article  MathSciNet  Google Scholar 

  • Moore, R. E. (1966). Interval Analysis. Englewood Cliffs, N.J.: Prentice Hall, inc.

    MATH  Google Scholar 

  • Oliveira, R. C., Peres, P. L. (2005). Stability of polytopes of matrices via affine parameter-dependent lyapunov functions: Asymptotically exact lmi conditions. Linear Algebra and its Applications, pp. 209–228.

  • Prado, M. L. M., Lordelo, A. D. S., Ferreira, P. A. V. (2005). Robust pole assignment by state feedback control analysis. In: Proceedings of the \(16^{th}\) IFAC World Congress, Praha, Czech Republic.

  • Rohn, J. (1994a). Enclosing solutions of linear interval equations is np-hard. Computing, 53, 365–368 (10.1007/BF02307386).

    Article  MathSciNet  Google Scholar 

  • Rohn, J. (1994b). Positive definiteness and stability of interval matrices. SIAM Journal on Matrix Analysis and Applications, 15, 175–184.

    Article  MathSciNet  Google Scholar 

  • Rump, S. M. (1994). Verification methods for dense and sparse systems of equations. Topics in Validated Computations, J. Herzberger, Amsterdam.

  • Rump, S. M. (2010). INTLAB - INTerval LABoratory, Institute for Reliable Computing. URL: http://www.ti3.tu-harburg.de/rump/intlab/

  • Seif, N. P., Husseim, S. A., & Deif, A. S. (1994). The interval sylvester equation. Computing, 52, 233–244.

    Article  MathSciNet  Google Scholar 

  • Soh, Y., Evans, R. J., Petersen, I., & Betz, R. E. (1987). Robust pole placement. Automatica, 23, 601–610.

    Article  Google Scholar 

  • Soliman, M. (2016). Robust power system stabilizer design via interval arithmetic. International Journal of Modelling, Identification and Control, 25, 287–300.

    Google Scholar 

  • Yang, G. H., & Lum, K. Y. (2007). Comparisons among robust stability criteria for linear systems with affine parameter uncertainties. Automatica, 43, 491–498.

    Article  MathSciNet  Google Scholar 

  • Zhou, K., & Doyle, J. C. (1998). Essentials of Robust Control. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Council for Scientific and Technological Development (CNPq), Brazil, Grants 159829/2013-5 and 307926/2009-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heloise Assis Fazzolari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazzolari, H.A., Ferreira, P.A.V. Robust Stability and Pole Placement. J Control Autom Electr Syst 32, 1498–1509 (2021). https://doi.org/10.1007/s40313-021-00798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00798-7

Keywords

Navigation