Skip to main content
Log in

Analysis of RMS Measurements Based on the Wavelet Transform

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The monitoring of voltage and current signals in the electric power system (EPS) is a fundamental step for studies on power quality. Thus, the root mean square (RMS) value of a signal is one of the crucial quantities in the analysis of EPS. In the presence of distortions, voltage and current signals are discrepant from the sinusoidal waveform, which motivates the monitoring of signals’ harmonic distortion. Therefore, it is necessary to perform a correct estimation of RMS values in each frequency component that composes the signals. This work presents a study aiming to evaluate the application of Stationary Discrete Wavelet Transform (SDWT) and Stationary Discrete Wavelet Packet Transform (SDWPT) for estimation of RMS values in different frequency ranges. From synthetic signals, the accuracy of the estimation of RMS values obtained via SDWT and SDWPT is analyzed. Additionally, the performance of SDWT and SDWPT was compared to Discrete Fourier Transform (DFT). The effects of mother wavelet choice are assessed from the frequency response of wavelet filters. Furthermore, the effects of the sampling frequency choice, magnitude variation, and noisy conditions on the estimation of RMS values are also evaluated. The results indicate the existence of discrepancies between estimated values via SDWT and SDWPT and exact values when the estimation is applied to individual frequency components. In contrast, as the DFT analyzes each frequency component individually, its performance was superior to that of the SDWT and SDWPT to estimate RMS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Tallaq, K. N. A., Al-Sharai, H. D., & El-Hawary, M. E. (2011). Online algorithm for removal of decaying dc-offset from fault currents. Electric Power Systems Research, 81, 1627–1629. https://doi.org/10.1016/j.epsr.2011.03.019.

    Article  Google Scholar 

  • Alves, D. K., Neto, C. M. S., Costa, F. B., & Ribeiro, R. L. A. (2014). Power measurement using the maximal overlap discrete wavelet transform. In 2014 11th IEEE/IAS international conference on industry applications, IEEE, Juiz de Fora, Brasil. https://doi.org/10.1109/induscon.2014.7059455

  • Alves, D. K., Costa, F. B., de Araujo Ribeiro, R. L., de Sousa Neto, C. M., & Rocha, T. D. (2017). Real-time power measurement using the maximal overlap discrete wavelet-packet transform. IEEE Transactions on Industrial Electronics, 64, 3177–3187. https://doi.org/10.1109/TIE.2016.2637304.

    Article  Google Scholar 

  • Argüelles, J. F. M., Arrieta, M. A. Z., Domínguez, J. L., Jaurrieta, B. L., & Benito, M. S. (2006). A new method for decaying dc offset removal for digital protective relays. Electric Power Systems Research, 76, 194–199. https://doi.org/10.1016/j.epsr.2005.06.002.

    Article  Google Scholar 

  • Barros, J., & Diego, R. I. (2006). Application of the wavelet-packet transform to the estimation of harmonic groups in current and voltage waveforms. IEEE Transactions on Power Delivery, 21, 533–535. https://doi.org/10.1109/TPWRD.2005.848437.

    Article  Google Scholar 

  • Barros, J., & Diego, R. I. (2008). Analysis of harmonics in power systems using the wavelet-packet transform. IEEE Transactions on Instrumentation and Measurement, 57, 63–69. https://doi.org/10.1109/tim.2007.910101.

    Article  Google Scholar 

  • Benmouyal, G. (1995). Removal of dc-offset in current waveforms using digital mimic filtering. IEEE Transactions on Power Delivery, 10, 621–630. https://doi.org/10.1109/61.400869.

    Article  Google Scholar 

  • Bollen, M. H., & Gu, I. (2006). Signal processing of power quality disturbances., IEEE Press Series on Power Engineering  : Wiley-IEEE Press.

  • Branco, H. M. G. C., Barbosa, D., Oleskovicz, M., & Coury, D. V. (2013). Classification of events in power transformers using wavelet packet transform and fuzzy logic. Journal of Control, Automation and Electrical Systems, 24, 300–311. https://doi.org/10.1007/s40313-013-0026-1.

    Article  Google Scholar 

  • Budeanu, C. (1927). Reactive and Fictitious Powers (in romanian). Publ. No. 2 of the Rumanian National Inst. Bucharest.

  • Chang, R. C. H., Chen, W. C., & Huang, J. K. S. (2019). A 93.4% efficiency 8mv offset voltage constant on-time buck converter with an offset cancellation technique. In: IEEE transactions on circuits and systems II: express briefs pp 2069–2073. https://doi.org/10.1109/TCSII.2019.2948208

  • Costa, F. B., & Driesen, J. (2013). Assessment of voltage sag indices based on scaling and wavelet coefficient energy analysis. IEEE Transactions on Power Delivery, 28, 336–346. https://doi.org/10.1109/TPWRD.2012.2218626.

    Article  Google Scholar 

  • Costa, F. B., Monti, A., & Paiva, S. (2017). Overcurrent protection in distribution systems with distributed generation based on the real-time boundary wavelet transform. IEEE Transactions on Power Delivery, 32(1), 462–473. https://doi.org/10.1109/TPWRD.2015.2509460.

    Article  Google Scholar 

  • Czarnecki, L. S. (1983). An orthogonal decomposition of the current of non-sinusoidal voltage source applied to non-linear loads. International Journal of Circuit Theory and Applications, 11, 235–239.

    Article  Google Scholar 

  • Daubechies, I. (1992). Ten lectures on wavelets, 1st edn. In CBMS-NSF regional conference series in applied mathematics 61, Society for Industrial and Applied Mathematics

  • de Almeida Coelho, R., & Brito, N. S. D. (2020). Análise da estimação de valores eficazes via Transformada Wavelet Packet Discreta Redundante. In: VIII Simpósio Brasileiro de Sistemas Elétricos (SBSE 2020), Santo André-SP, Brazil

  • de Almeida Coelho, R., & Brito, N. S. D. (2020). Power measurement using stockwell transform. IEEE transactions on power delivery. https://doi.org/10.1109/TPWRD.2020.3033403.

  • Donoho, D. L., & Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425–455. https://doi.org/10.1093/biomet/81.3.425.

    Article  MathSciNet  MATH  Google Scholar 

  • Driesen, J. L. J., & Belmans, R. J. M. (2003). Wavelet-based power quantification approaches. IEEE Transactions on Instrumentation and Measurement, 52, 1232–1238. https://doi.org/10.1109/tim.2003.816833.

    Article  Google Scholar 

  • Dugan, R. C., McGranaghan, M. F., Santoso, S., & Beaty, H. W. (2004). Electrical power systems quality (2nd ed.). : McGraw-Hill.

  • Electro Industries/GaugeTech (2013) Communicator EXT 3.0 User Manual V.1.41.

  • Gu, J. C., & Yu, S. L. (2000). Removal of dc offset in current and voltage signals using a novel fourier filter algorithm. IEEE Transactions on Power Delivery, 15, 73–79. https://doi.org/10.1109/61.847231.

    Article  Google Scholar 

  • Hamid, E. Y., Mardiana, R., & Kawasaki, Z. I. (2002). Method for rms and power measurements based on the wavelet packet transform. IEE Proceedings - Science Measurement and Technology, 149, 60–66. https://doi.org/10.1049/ip-smt:20020156.

    Article  Google Scholar 

  • Huang, H. C., & Cressie, N. (2000). Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data. Technometrics, 42, 262–276. https://doi.org/10.1080/00401706.2000.10486047.

    Article  MathSciNet  MATH  Google Scholar 

  • IEEE Std 1159-1995 (1995). IEEE recommended practice for monitoring electric power quality, pp 1– 809. https://doi.org/10.1109/IEEESTD.1995.79050

  • IEEE Std 1459-2000. (2000). IEEE standard definitions for the measurement of electric power quantities under sinusoidal, non-sinusoidal, balanced, or unbalanced conditions, pp 1–52. https://doi.org/10.1109/IEEESTD.2000.93398

  • IEEE Std 1459 (2010) IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, pp 1–50. https://doi.org/10.1109/IEEESTD.2010.5439063

  • Jensen, A., & la Cour-Harbo, A. (2001). Ripples in mathematics: The discrete wavelet transform (1st ed.). Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Leal, M. M., Costa, F. B., & Campos, J. T. L. S. (2019). Improved traditional directional protection by using the stationary wavelet transform. International Journal of Electrical Power & Energy Systems, 105, 59–69. https://doi.org/10.1016/j.ijepes.2018.08.005.

    Article  Google Scholar 

  • Lin, Y. C., Chen, C. J., Chen, D., & Wang, B. (2012). A ripple-based constant on-time control with virtual inductor current and offset cancellation for dc power converters. IEEE Transactions on Power Electronics, 27, 4301–4310. https://doi.org/10.1109/tpel.2012.2191799.

    Article  Google Scholar 

  • Littler, T. B., & Morrow, D. J. (1999). Wavelets for the analysis and compression of power system disturbances. IEEE Transactions on Power Delivery, 14, 358–364. https://doi.org/10.1109/61.754074.

    Article  Google Scholar 

  • Li, C. H., Wang, C. C., Chiu, H. J., & Lo, Y. K. (2015). Adaptive on-time control with adjustable virtual ripple and offset cancellation for buck converter. IET Power Electronics, 8, 2418–2428. https://doi.org/10.1049/iet-pel.2014.0820.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693. https://doi.org/10.1109/34.192463.

    Article  MATH  Google Scholar 

  • Mallat, S. (2008). A wavelet tour of signal processing: The sparse way (3rd ed.).  : Academic Press.

  • Morsi, W. G., & El-Hawary, M. E. (2008). The most suitable mother wavelet for steady-state power system distorted waveforms. In 2008 canadian conference on electrical and computer engineering, IEEE, Niagara Falls, Canada. https://doi.org/10.1109/ccece.2008.4564487

  • Morsi, W. G., & El-Hawary, M. E. (2007). Reformulating power components definitions contained in the ieee standard 1459–2000 using discrete wavelet transform. IEEE Transactions on Power Delivery, 22, 1910–1916. https://doi.org/10.1109/TPWRD.2007.899777.

    Article  Google Scholar 

  • Morsi, W. G., & El-Hawary, M. E. (2008). A new perspective for the IEEE standard 1459-2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance. IEEE Transactions on Power Delivery, 23, 2356–2365. https://doi.org/10.1109/TPWRD.2008.2002660.

    Article  Google Scholar 

  • Morsi, W. G., & El-Hawary, M. E. (2009). A new reactive, distortion and non-active power measurement method for nonstationary waveforms using wavelet packet transform. Electric Power Systems Research, 79, 1408–1415. https://doi.org/10.1016/j.epsr.2009.04.018.

    Article  Google Scholar 

  • Peng, Z. K., Jackson, M. R., Rongong, J. A., Chu, F. L., & Parkin, R. M. (2009). On the energy leakage of discrete wavelet transform. Mechanical Systems and Signal Processing, 23, 330–343. https://doi.org/10.1016/j.ymssp.2008.05.014.

  • Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis, 1st edn. In Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press

  • Qiu, J., Paw U, K. T., & Shaw, R. H. (1995). The leakage problem of orthonormal wavelet transforms when applied to atmospheric turbulence. Journal of Geophysical Research, 100, 25769–25779. https://doi.org/10.1029/95jd02596.

    Article  Google Scholar 

  • Santoso, S., Powers, E. J., & Grady, W. M. (1997). Power quality disturbance data compression using wavelet transform methods. IEEE Transactions on Power Delivery, 12, 1250–1257. https://doi.org/10.1109/61.637001.

    Article  Google Scholar 

  • Sharon, D. (1973). Reactive-power definitions and power-factor improvement in nonlinear systems. Proceedings IEE, 120(6), 704–706.

    Google Scholar 

  • Shepherd, W., & Zakikhani, P. (1972). Suggested definition of reactive power for nonsinusoidal systems. Proceedings IEE, 119(9), 1361–1362.

    Google Scholar 

  • Steinmetz, C. P. (1897). Theory and calculation of alternating current phenomena (1st ed.).  : The W. J. Johnston Co.

  • Vaseghi, S. V. (2006). Advanced digital signal processing and noise reduction (3rd ed.).  : Wiley.

  • Vatansever, F., & Ozdemir, A. (2008). A new approach for measuring RMS value and phase angle of fundamental harmonic based on wavelet packet transform. Electric Power Systems Research, 78, 74–79. https://doi.org/10.1016/j.epsr.2006.12.009.

    Article  Google Scholar 

  • Vatansever, F., & Ozdemir, A. (2009). Power parameters calculations based on wavelet packet transform. International Journal of Electrical Power & Energy Systems, 31, 596–603. https://doi.org/10.1016/j.ijepes.2009.04.001.

    Article  Google Scholar 

  • Yoon, W. K., & Devaney, M. J. (1998). Power measurement using the wavelet transform. IEEE Transactions on Instrumentation and Measurement, 47, 1205–1210. https://doi.org/10.1109/19.746584.

    Article  Google Scholar 

  • Yoon, W. K., & Devaney, M. J. (2000). Reactive power measurement using the wavelet transform. IEEE Transactions on Instrumentation and Measurement, 49, 246–252. https://doi.org/10.1109/19.843057.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Research Council for Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo de Almeida Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, R.d.A., Brito, N.S.D. Analysis of RMS Measurements Based on the Wavelet Transform. J Control Autom Electr Syst 32, 1588–1602 (2021). https://doi.org/10.1007/s40313-021-00770-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00770-5

Keywords

Navigation