Adaptive Fuzzy Control of Robot Manipulators with Asymptotic Tracking Performance

Abstract

Adaptive fuzzy controllers are powerful intelligent control tools applied to handle the complexity of robot manipulators; however, their tracking performances are considerably affected by the fuzzy approximation error. This paper introduces a decentralized adaptive fuzzy control (AFC) design based on voltage control strategy, equipped with a novel fuzzy approximation error compensator. Asymptotic tracking performance is achieved by means of compensating the fuzzy approximation error adaptively. The proposed design simplifies the complex control procedure of electrically driven robot manipulators, and it is independent from the mathematical model. The asymptotic stability of the proposed controller has been guaranteed and proven via Barbalat’s lemma. The control approach is simulated on a four-link SCARA robot driven by permanent magnet DC motors, and the simulation results reveal the improvement in tracking the desired trajectory, compared to a previous AFC based on voltage control strategy without fuzzy approximation error compensation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Ahmadi, S. M., & Fateh, M. M. (2018). Task-space control of robots using an adaptive Taylor series uncertainty estimator. International Journal of Control. https://doi.org/10.1080/00207179.2018.1429673.

    Article  MATH  Google Scholar 

  2. Chaoui, H., & Gualous, H. (2017). Adaptive fuzzy logic control for a class of unknown nonlinear dynamic systems with guaranteed stability. Journal of Control Automation and Electrical Systems,28, 727–736.

    Article  Google Scholar 

  3. Chen, M., Chen, W. H., & Wu, Q. X. (2014). Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Science China Information Sciences,57, 1–13.

    MATH  Google Scholar 

  4. Fateh, M. M. (2008). On the voltage-based control of robot manipulators. International Journal of Control, Automation and Systems,6, 702–712.

    Google Scholar 

  5. Fateh, M. M. (2012). Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dynamics,67, 1525–1537.

    MathSciNet  Article  Google Scholar 

  6. Fateh, M. M., & Abedinzadeh, S. M. (2015). Adaptive fuzzy control of a mobile manipulator robot. Journal of Solid and Fluid Mechanics,5(2), 17–27.

    Google Scholar 

  7. Fateh, M. M., & Azargoshasb, S. (2014). Discrete-time indirect adaptive fuzzy control for robot manipulators. International Journal of Intelligent Computing and Cybernetics,7, 382–396.

    MathSciNet  Article  Google Scholar 

  8. Fateh, M. M., & Fateh, S. (2012). Decentralized direct adaptive fuzzy control of robots using voltage control strategy. Nonlinear Dynamics,70(3), 1919–1930.

    MathSciNet  Article  Google Scholar 

  9. Fateh, M. M., & Khoshdel, V. (2015). Voltage-based adaptive impedance force control for a lower-limb rehabilitation robot. Advanced Robotics,29, 961–971.

    Article  Google Scholar 

  10. Isidori, A. (1989). Nonlinear control systems. Heidelberg: Springer.

    Google Scholar 

  11. Krarti, M. (2010). Energy Audit of Building Systems: An Engineering Approach. Boca Raton: CRC Press.

    Google Scholar 

  12. Li, Z., Chen, Z., & Chen, P. (2016). Disturbance observer-based fuzzy control of uncertain MIMO mechanical systems with input nonlinearities and its application to robotic exoskeleton. IEEE Transactions on Cybernetics, 47(4), 1–11.

    Google Scholar 

  13. Li, T. H. S., & Huang, Y. C. (2010). MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Information Sciences,180, 4641–4660.

    MathSciNet  Article  Google Scholar 

  14. Mendes, N., & Neto, P. (2016). Indirect adaptive fuzzy control for industrial robots: A solution for contact applications. Expert Systems with Applications,42, 8929–8935.

    Article  Google Scholar 

  15. Moussaoui, S., Boulkroune, A., & Vaidyanathan, S. (2016). Fuzzy adaptive sliding-mode control scheme for uncertain underactuated systems. In: Advances and applications in nonlinear control systems (pp. 351–367).

  16. Patre, P. M., MacKunis, W., Kaiser, K., & Dixon, W. E. (2008). Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure. IEEE Transactions on Automatic Control,53(9), 2180–2185.

    MathSciNet  Article  Google Scholar 

  17. Qu, Z., & Dawson, D. M. (1996). Robust tracking control of robot manipulators. New York: IEEE Press.

    Google Scholar 

  18. Shahnazi, R., & Akbarzadeh, M. (2008). PI adaptive fuzzy control with large and fast disturbance rejection for a class of uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems,16, 187–197.

    Article  Google Scholar 

  19. Shi, W., Zhang, M., Guo, W., & Guo, L. (2011). Adaptive fuzzy control for MIMO nonlinear systems. Computers & Mathematics with Applications,62, 2843–2853.

    MathSciNet  Article  Google Scholar 

  20. Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Upper Saddle River: Prentice Hall.

    Google Scholar 

  21. Souzanchi-K, M., Arab, A., Akbarzadeh-T, M., & Fateh, M. M. (2017). Robust impedance control of uncertain mobile manipulators using time-delay compensation. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/tcst.2017.2739109.

    Article  Google Scholar 

  22. Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modelling and control. Hoboken: Wiley.

    Google Scholar 

  23. Sun, W., Xia, J., Zhuang, G., Huang, X., & Shen, H. (2019). Adaptive fuzzy asymptotically tracking control of full state constrained nonlinear system based on a novel Nussbaum-type function. Journal of the Franklin Institute,356, 1810–1827. https://doi.org/10.1016/j.jfranklin.2018.11.023.

    MathSciNet  Article  MATH  Google Scholar 

  24. Wang, L. X. (1996). A course in fuzzy systems and control. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  25. Wang, F., Chen, B., Liu, X., & Lin, C. (2018). Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Transactions on Fuzzy Systems,26(3), 1207–1216.

    Article  Google Scholar 

  26. Wu, J., Chen, W., & Li, J. (2015a). Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy. Fuzzy Sets and Systems,273, 1–25.

    MathSciNet  Article  Google Scholar 

  27. Wu, T., & Juang, Y. (2008). Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems. ISA Transactions,47, 279–285.

    Article  Google Scholar 

  28. Wu, T. S., Karkoub, M., Chen, H. S., Yu, W. S., & Her, M. (2015b). Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear MIMO systems with time delayed states. Information Sciences,290, 86–105.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fateh, S., Fateh, M.M. Adaptive Fuzzy Control of Robot Manipulators with Asymptotic Tracking Performance. J Control Autom Electr Syst 31, 52–61 (2020). https://doi.org/10.1007/s40313-019-00496-5

Download citation

Keywords

  • Adaptive fuzzy control
  • Electrically driven SCARA robot
  • Fuzzy approximation error
  • Stability analysis