Skip to main content
Log in

Adaptive Neural Network-Based Backstepping Sliding Mode Control Approach for Dual-Arm Robots

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The paper introduces an adaptive strategy to effectively control a nonlinear dual-arm robot under external disturbances and uncertainties. By the use of the backstepping sliding mode control (BSSMC) method, the proposed algorithm first allows the manipulators to be able to robustly track the desired trajectories. Furthermore, due to the nonlinear, uncertain and unmodeled dynamics of the dual-arm robot, it is proposed to employ the radial basis function network (RBFN) to adaptively estimate the robot’s dynamic model. Though the estimation of the dynamics is approximate, the adaptation law is derived from the Lyapunov theory, which provides the controller with ability to guarantee stability of the whole system in spite of its nonlinearities, parameter uncertainties and external load variations. The effectiveness of the proposed RBFN–BSSMC approach is demonstrated by implementation in a simulation environment with realistic parameters, where the obtained results are highly promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

From Yagiz et al. (2010)

Fig. 2

From Yagiz et al. (2010)

Fig. 3

From Yagiz et al. (2010)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Caccavale, F., Chiacchio, P., Marino, A., & Villani, L. (2008). Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions On Mechatronics, 13(5), 576–586.

    Article  Google Scholar 

  • Chen, N., Song, F., Li, G., Sun, X., & Ai, C. (2013). An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Communications in Nonlinear Science and Numerical Simulation, 18(10), 2885–2899.

    Article  MathSciNet  MATH  Google Scholar 

  • Dauchez, P., Delebarre, X., Bouffard, Y., & Degoulange, E. (1991). Task modeling and force control for a two-arm robot. In IEEE Proceedings-international conference on robotics and automation (pp. 1702–1707), 9–11 April.

  • Do, H. M., Park, C., & Kyung, J. H. (2012). Dual arm robot for packaging and assembling of it products. In IEEE proceedings-international conference on automation science and engineering (pp. 1067–1070), 20–24 August.

  • Hacioglu, Y., Arslan, Y. Z., & Yagiz, N. (2011). MIMO fuzzy sliding mode controlled dual arm robot in load transportation. Journal of the Franklin Institute, 348(8), 1886–1902.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimoto, H., Maruyama, K., & Harashima, F. (1987). A microprocessor-based robot manipulator control with sliding mode. IEEE Transactions on Industrial Electronics, IE–34(1), 11–18.

    Article  Google Scholar 

  • Hayati, S. (1986). Hybrid position/force control of multi-arm cooperating robots. In IEEE proceedings-international conference on robotics and automation (pp. 82–89), 7–10 April.

  • Herman, P. (2005). Sliding mode control of manipulators using first-order equations of motion with diagonal mass matrix. Journal of the Franklin Institute, 342(4), 353–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Y., Liu, Z., Chen, C., & Zhang, Y. (2015). Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity. Nonlinear Dynamics, 81(3), 1301–1314.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, H. X., Nguyen, T. V., Le, A. V., Vu, N. T. T., & Phan, M. X. (2017). Adaptive backstepping hierarchical sliding mode control for uncertain 3D overhead crane systems. In IEEE proceedings-international conference on system science and engineering (pp. 438–443), 21–23 July.

  • Le, V.-A., Le, H. X., Nguyen, L., & Phan, M. X. (2019). An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes. International Journal of Automation and Computing. https://doi.org/10.1007/s11633-019-1174-y.

  • Lee, J., Chang, P. H., & Jamisola, R. S. (2014). Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Transactions on Industrial Electronics, 61(7), 3786–3796.

    Article  Google Scholar 

  • Lee, M.-J., & Choi, Y.-K. (2004). An adaptive neurocontroller using RBFN for robot manipulators. IEEE Transactions on Industrial Electronics, 51(3), 711–717.

    Article  Google Scholar 

  • Lee, S. (1989). Dual redundant arm configuration optimization with task-oriented dual arm manipulability. IEEE Transactions on Robotics and Automation, 5(1), 78–97.

    Article  Google Scholar 

  • Liu, Z., Chen, C., Zhang, Y., & Chen, C. P. (2015). Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Transactions on Cybernetics, 45(3), 507–518.

    Article  Google Scholar 

  • Meier, W., & Graf, J. (1991). A two-arm robot system based on trajectory optimization and hybrid control including experimental evaluation. In IEEE proceedings-international conference on robotics and automation (pp. 2618–2623), 9–11 April.

  • Schneider, S. A., & Cannon, R. H. (1992). Object impedance control for cooperative manipulation: Theory and experimental results. IEEE Transactions on Robotics and Automation, 8(3), 383–394.

    Article  Google Scholar 

  • Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D. V., et al. (2012). Dual arm manipulation—A survey. Robotics and Autonomous Systems, 60(10), 1340–1353.

    Article  Google Scholar 

  • Tang, Y., Sun, F., & Sun, Z. (2006). Neural network control of flexible-link manipulators using sliding mode. Neurocomputing, 70(1–3), 288–295.

    Article  Google Scholar 

  • Tanie, K. (2003). Humanoid robot and its application possibility. In IEEE proceedings-international conference on multisensor fusion and integration for intelligent systems (pp. 213–214), 1 August.

  • Utkin, V. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Chai, T., & Zhai, L. (2009). Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics, 56(9), 3296–3304.

    Article  Google Scholar 

  • Wu, Q. (2012). Sliding-mode control of induction motor based on inverse decoupling. International Journal of Automation and Control, 6(2), 193–206.

    Article  MathSciNet  Google Scholar 

  • Yagiz, N., Hacioglu, Y., & Arslan, Y. Z. (2010). Load transportation by dual arm robot using sliding mode control. Journal of Mechanical science and Technology, 24(5), 1177–1184.

    Article  MATH  Google Scholar 

  • Yamano, M., Kim, J.-S., Konno, A., & Uchiyama, M. (2004). Cooperative control of a 3D dual-flexible-arm robot. Journal of Intelligent and Robotic Systems, 39(1), 1–15.

    Article  Google Scholar 

  • Yannier, S., Sabanovic, A., Onat, A., & Bastan, M. (2005). Sliding mode based obstacle avoidance and target tracking for mobile robots. In IEEE proceedings-international symposium on industrial electronics (pp. 1489–1493), 20–23 June.

  • Yun, X., & Kumar, V. R. (1991). An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations. IEEE Transactions on Robotics and Automation, 7(5), 618–625.

    Article  Google Scholar 

  • Zheng, Y. F., & Luh, J. (1989). Optimal load distribution for two industrial robots handling a single object. Journal of Dynamic Systems, Measurement, and Control, 111(2), 232–237.

    Article  Google Scholar 

  • Zhou, Y., Wu, Y., & Hu, Y. (2007). Robust backstepping sliding mode control of a class of uncertain MIMO nonlinear systems. In IEEE proceedings-international conference on control and automation (pp. 1916–1921), 30 May–1 June.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.V., Thai, N.H., Pham, H.T. et al. Adaptive Neural Network-Based Backstepping Sliding Mode Control Approach for Dual-Arm Robots. J Control Autom Electr Syst 30, 512–521 (2019). https://doi.org/10.1007/s40313-019-00472-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00472-z

Keywords

Navigation